
HP 10391B
Inverse Assembler

Development Package
Reference Manual

for the HP 16500A Logic Analy sis System,
and the HP 1650A/B and HP 1651A/B Logic Analyzers

Copyright Hewlett-Packard Company 1990

Manual Part Number 10391-90903
Microfiche Part Number 10391-90803 Printed in U.S.A. April 1990

Printing History

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition is published.

A software code may be printed before the date; this indicates the version
of the software product at the time the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

Edition 1 April 1990 10391-90903

ii

List of Effective Pages

The List of Effective Pages gives the date of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition is indicated by printing the date the changes
were made on the bottom of the page. If an update is incorporated when
a new edition of the manual is printed, the change dates are removed from
the bottom of the pages and the new edition date is listed in the Printing
History and on the title page.

Pages Effective Date

iii

iv

Product
Warranty

This Hewlett-Packard product has a warranty against defects in
material and workmanship for a period of 1 year from date of
shipment. During warranty period, Hewlett-Packard Company will, at
its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a
service facility designated by Hewlett-Packard. However, warranty
service for products installed by Hewlett-Packard and certain other
products designated by Hewlett-Packard will be performed at Buyer’s
facility at no charge within the Hewlett-Packard service travel area.
Outside Hewlett-Packard service travel areas, warranty service will be
performed at Buyer’s facility only upon Hewlett-Packard’s prior
agreement and Buyer shall pay Hewlett-Packard’s round trip travel
expenses.

For products returned to Hewlett-Packard for warranty service, the
Buyer shall prepay shipping charges to Hewlett-Packard and
Hewlett-Packard shall pay shipping charges to return the product to
the Buyer. However, the Buyer shall pay all shipping charges, duties,
and taxes for products returned to Hewlett-Packard from another
country.

Hewlett-Packard warrants that its software and firmware designated by
Hewlett-Packard for use with an instrument will execute its
programming instructions when properly installed on that instrument.
Hewlett-Packard does not warrant that the operation of the
instrument, software, or firmware will be uninterrupted or error-free.

Limitation of
Warranty

The foregoing warranty shall not apply to defects resulting from
improper or inadequate maintenance by the Buyer, Buyer-supplied
software or interfacing, unauthorized modification or misuse, operation
outside of the environmental specifications for the product, or
improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.
HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Exclusive
Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE
AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

Assistance Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For assistance, contact your nearest Hewlett-Packard Sales and Service
Office. Addresses are provided at the back of this operating manual.

Certification Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory.
Hewlett-Packard further certifies that its calibration measurements are
traceable to the United States National Bureau of Standards, to the
extent allowed by the Bureau’s calibration facility, and to the
calibration facilities of other International Standards Organization
members.

Safety This product has been designed and tested according to International
Safety Requirements. To ensure safe operation and to keep the
product safe, the information, cautions, and warnings in this operating
manual must be heeded.

iv

Contents

Chapter 1: General Information
Introduction . 1-1
Equipment Required . 1-2
Installing the Software. 1-3

What’s On This Disk . 1-3
Installing the Software on a Hard Disk . 1-4
What the Installation Does . 1-5
Installing the Software on a Flexible Disk . 1-6
What the Installation Does . 1-7
Advanced Installation Topics . 1-8

Setting Up the Hardware . 1-9
Building a Custom Inverse Assembler . 1-11
Assembling the Source Code . 1-13

Assembler Options. 1-15
Option Definitions . 1-16

Downloading the Relocatable File . 1-19
Shortcuts When Using IALDOWN . 1-21
Batch Files . 1-22

Building the Configuration File . 1-23
Linking the Inverse Assembler and the Configuration File 1-26

Putting It All Together . 1-27

Chapter 2: Inverse Assembler Operation

Introduction . 2-1
Inverse Assembler Operation . 2-2
Inverse Assembly Process. 2-4
Summary. 2-9

HP 10391B IAL Development Package
Reference Manual Contents-1

Chapter 3: Writing Inverse Assembler Code
Introduction . 3-1
IAL Environment . 3-1
The Logic Analyzer Acquisition Memory . 3-2
The Accumulator. 3-2
IAL Variables . 3-3
The Output Display Buffer. 3-4
Developing an Inverse Assembler . 3-4
A Simple Inverse Assembler . 3-6
Reading Acquisition Memory . 3-8
Decoding the STA Instruction. 3-8
Decoding the Destination Address of the STA Instruction 3-11
Additional Capabilities of the Input Instruction 3-15
Putting Text into the Output Display Buffer . 3-17
Generating Symbolic Addresses . 3-18

Case 1: . 3-19
Case 2: . 3-19
Case 3: . 3-20

Hints on Parsing an Opcode . 3-20
Using INPUT_TAG to Mark States . 3-21
Other Communication Variables. 3-22
RETURN_FLAGS. 3-22
TASK . 3-23

Chapter 4: Inverse Assembler Instruction Set

Introduction . 4-1
Choosing a Text Editor . 4-1
Entering Inverse Assembler Source Code . 4-2

The First Line . 4-2
Line Format Rules . 4-3
Length of Lines. 4-3
Label Field. 4-4
Operation Field. 4-5
Operand Field . 4-6
Comment Field . 4-6
Delimiters . 4-7
Numeric Terms . 4-7
String Constants . 4-8

HP 10391B IAL Development Package
Contents-2 Reference Manual

Language Reference . 4-8
ABORT . 4-9
ADD . 4-10
AND . 4-11
Pseudo ASCII/ASC. 4-12
Pseudo BASE_TITLE . 4-13
CALL . 4-14
CASE_OF . 4-15
COMPLEMENT. 4-17
CONSTANT/ CONST Pseudo . 4-18
DECREMENT . 4-19
Pseudo DEFAULT_WIDTH . 4-20
EXCLUSIVE_OR . 4-21
EXTRACT_BIT . 4-22
FETCH_POSITION. 4-23
Pseudo FORMAT . 4-25
GOTO . 4-27
IF . 4-28
IF_NOT_MAPPED . 4-30
INCLUSIVE_OR . 4-32
INCREMENT . 4-33
INPUT . 4-34
Pseudo LABEL_TITLE . 4-37
LOAD . 4-38
MAX_INSTRUCTION Pseudo . 4-39
NEW_LINE . 4-41
NOP. 4-42
OUTPUT . 4-43
POSITION . 4-44
QUALIFY_MASK & QUALIFY_VALUE Pseudos 4-45
RETURN . 4-47
ROTATE . 4-48
SEARCH_LIMIT Pseudo . 4-49
SET . 4-50
STORE . 4-51
SUBTRACT. 4-52
TAG_WITH. 4-53
TWOS_COMPLEMENT . 4-54
Pseudo VARIABLE/VAR. 4-55

HP 10391B IAL Development Package
Reference Manual Contents-3

Appendix A: 8085 Inverse Assembler

Appendix B: Microprocessors with Incomplete Status
Introduction . B-1
Using INPUT_TAG to Mark States . B-2
Software Compatibility with other Logic Analyzers B-5
Synchronizing the Inverse Assembler to the Captured Data B-6
The "Invasm" Field. B-6
INPUT_TAG Values and How They Change B-8
Using RETURN_FLAGS . B-12
Summary of INPUT_TAGS Bits 16 and 17 . B-15
States Containing Multiple Opcodes . B-16
The "Invasm" Field Revisited . B-16
Code Synchronization with the HP 1630/31 Logic Analyzers B-19

Appendix C: 68010 Inverse Assembler

Appendix D: Assembler Error Messages

Detection and Listing . D-1
Error Codes . D-2

Index

HP 10391B IAL Development Package
Contents-4 Reference Manual

1
General Information

Introduction The HP 10391B Inverse Assembler Development Package allows you
to design a custom inverse assembler for the HP 1650A/B,
HP 1651A/B, HP 16510A/B, or HP 16511B Logic Analyzers. The
inverse assembler runs in the logic analyzer, and converts the "ones and
zeros" captured by the analyzer into mnemonics you’re familiar with.

The inverse assembler routines are written on an HP Vectra, IBM-PC,
or PC compatible using Hewlett-Packard’s Inverse Assembly
Language. This code is assembled on the PC, then downloaded over
RS-232C to the disk in the logic analyzer. The inverse assembler file
can then be loaded into a state analyzer to disassemble captured data.

To be successful with this software package, you should be familiar
with general programming concepts and simple microprocessor
operation. In addition, a basic understanding of state analysis with
Hewlett-Packard logic analyzers is assumed in this manual.

This manual is organized as follows:

• Chapter 1 lists the equipment required by this software package,
and describes how to install the software on the PC. This chapter
also gives a step-by-step guide to using the programs provided in
this package. This chapter should be read by all users.

• Chapters 2 and 3 are a tutorial on writing an inverse assembler.
These chapters can be skipped if you’ve used Hewlett-Packard’s
Inverse Assembly Language (IAL) on the HP 64000
Development System.

• Chapter 4 is the language reference for the Inverse Assembler
Language (IAL).

• The appendices hold listings of sample source code, and a
tutorial for advanced topics.

HP 10391B IAL Development Package General Information
Reference Manual 1-1

Equipment
Required

The following equipment in needed to use the HP Inverse Assembler
Development Package:

1. HP Vectra, IBM-PC, or PC compatible with a minimum of
256 Kbytes of memory and MS-DOS 2.1 or above.

2. One flexible disk drive with an internal hard disk (recommended
configuration) for the PC, or two flexible disk drives.

3. RS-232C port configured as COM 1 or 2 on the PC.
Recommended card:

• HP 24540A Serial/Parallel Card, or
• HP 24541A Dual Serial Card.

4. RS-232C printer cable. Recommended cable:

• For 25-pin ports: HP p/n 13242-60010 or equivalent.
• For 9-pin ports: HP 24542G or equivalent.

5. HP 1650A/B or HP 1651A/B Logic Analyzer, or HP 16500A
Logic Analysis System with an HP 16510A/B or HP 16511B
State/Timing Card installed.

The Inverse Assembler Development Package will require
approximately 220 Kbytes of disk space.

General Information HP 10391B IAL Development Package
1-2 Reference Manual

Installing the
Software

The Inverse Assembler Development Package includes one 5.25 inch
flexible disk which contains all of the software for this package. This
section describes how to install this software on a hard disk or another
flexible disk.

What’s On
This Disk

The following files are included in the Inverse Assembler Development
Package:

Filename Description

INSTALL.BAT Batch file for installing the Inverse Assembler Development Package.

ASM.EXE Assembler for HP’s Inverse Assembly Language.

AIAL A look-up table used by the IAL assembler.

IALDOWN.EXE Download program to put the inverse assembler on the logic analyzer
disk.

I8085.S Source code for Intel 8085 inverse assembler.

8085.BAT Batch file for automating the assembly and download process.

8085.CMD Input file for use with 8085.BAT

I68010.S Source code for Motorola 68010 inverse assembler.

68010.BAT Batch file for automating the assembly and download process.

68010.CMD Input file for use with 68010.BAT.

HP 10391B IAL Development Package General Information
Reference Manual 1-3

Installing the
Software on a

Hard Disk

Use the following steps to install the software on a hard disk:

1. Insert the 5.25 inch flexible disk containing the HP 10391B
software into Drive A: of the PC.

2. At the DOS prompt, change the current drive to the hard disk.
For instance, if your hard disk is Drive C:, type

C:

at the DOS prompt.

3. At the DOS prompt, make the subdirectory where you want the
Inverse Assembler Development Package installed. For instance,
if you want to put the software in the subdirectory \ IAL on the
hard disk, type

MKDIR IAL

at the DOS prompt. If you are installing the software in the root
directory or into a subdirectory that already exists, this step is not
needed.

4. Change the current DOS directory to the directory where you
want the software installed. For instance, if you want to install
the software in subdirectory \ IAL, type

CD\ IAL

at the DOS prompt.

5. Type

A:\ INSTALL

at the DOS prompt. This will begin the installation process.
When the installation is completed, you will see the message

Installation Complete!

on the PC screen and you will be returned to a DOS prompt in
the root directory of the current drive.

General Information HP 10391B IAL Development Package
1-4 Reference Manual

What the
Installation Does

Running the INSTALL.BAT batch file does the following:

1. It copies these files from Drive A: to the current directory on the
hard disk:

ASM.EXE
IALDOWN.EXE

I8085.S
8085.BAT
8085.CMD

I68010.S
68010.BAT
68010.CMD

2. It creates the subdirectory

\ HP64700\ TABLES

on your hard disk.

3. It copies the file

AIAL

into the subdirectory \ HP64700\ TABLES on your hard disk.
This file is a table used by the ASM.EXE program. It MUST be
in this subdirectory for the ASM.EXE program to execute
properly.

HP 10391B IAL Development Package General Information
Reference Manual 1-5

Installing the
Software on a
Flexible Disk

Use the following steps to install the software on a flexible disk:

1. Insert the 5.25 inch flexible disk containing the HP 10391B into
Drive A: of the PC.

2. Put the destination flexible disk into Drive B:. If the flexible disk
in Drive B: is not formatted, format it at this time.

3. At the DOS prompt, change the current drive to Drive B: by
typing

B:

at the DOS prompt.

4. At the DOS prompt, make the subdirectory where you want the
Inverse Assembler Development Package installed. For instance,
if you want to put the software in the subdirectory \ IAL on the
flexible disk, type

MKDIR IAL

at the DOS prompt. If you are installing the software in the root
directory or into a subdirectory that already exists, this step is not
needed.

5. Change the current DOS directory to the directory where you
want the software installed. For instance, if you want to install
the software in subdirectory \ IAL, type

CD\ IAL

at the DOS prompt.

General Information HP 10391B IAL Development Package
1-6 Reference Manual

6. Type

A:\ INSTALL

at the DOS prompt. This will begin the installation process. When the
installation is completed, you will see the message

Installation Complete!

on the PC screen and you will be returned to a DOS prompt in the root
directory of Drive B:.

What the
Installation Does

Running the INSTALL.BAT file does the following:

1. Copies these files from Drive A: to the current directory of the
flexible disk in Drive B:

ASM.EXE
IALDOWN.EXE

I8085.S
8085.BAT
8085.CMD

I68010.S
68010.BAT
68010.CMD

2. Creates the subdirectory

\ HP64700\ TABLES

on the flexible disk in Drive B:.

3. Copies the file

AIAL

into the subdirectory B:\ HP64700\ TABLES. This file contains a
table used by the ASM.EXE program. It MUST be in this
subdirectory for the ASM.EXE program to execute properly.

HP 10391B IAL Development Package General Information
Reference Manual 1-7

Advanced
Installation Topics

The installation instructions just presented assume you will be
executing the ASM.EXE and IALDOWN.EXE files while in the
subdirectory where these files are stored. If you want to execute these
files while in a different subdirectory, or from a different drive, the
following steps will be necessary:

1. Add the PATH statement to your AUTOEXEC.BAT file that
points to the subdirectory where the Inverse Assembler
Development Package is located. For example, if the software
was installed in the subdirectory C:\ IAL, you must add the
following statement to your AUTOEXEC.BAT file:

PATH= C:\ IAL

2. Add the SET statement to your AUTOEXEC.BAT file that
points to the drive where subdirectory \ HP64700 was created by
the INSTALL.BAT file. For example, if the subdirectory
\ HP64700 was created on the C: drive, the following line should
be added to your AUTOEXEC.BAT file:

SET HPTABLES= C:\ HP64700\ TABLES

After adding these statements to your AUTOEXEC.BAT file, reboot
your PC.

These statements will allow you to execute the ASM.EXE and
IALDOWN.EXE programs from any subdirectory in your PC.

General Information HP 10391B IAL Development Package
1-8 Reference Manual

Setting Up the
Hardware

These steps must be performed to properly set up the hardware for the
Inverse Assembler Development Package:

1. Connect the logic analyzer to the COM 1 or 2 port of the PC
using the RS-232C cable specified earlier in this chapter.

2. Turn on and boot up the logic analyzer.

3. Check the RS-232C configuration.

a. If you are using an HP 1650A or HP 1651A, press the I/O key,
and select the "RS-232-C Configuration" field.

b. If you are using an HP 1650B or HP 1651B, press the I/O key,
and select "Controller connected to RS-232C."

c. If you are using an HP 16500A, select the "RS-232C" field in
the System Configuration Menu. Change the pop-up to read
"RS-232C Connected to: Controller".

d. The required RS-232C configuration for all of the logic
analyzers is:

Protocol: XON/XOFF
Data Bits: 8
Stop Bits: 1
Parity: None
Baud rate: 9600

e. Select the "Done" field on the display when the configuration is
set up correctly.

HP 10391B IAL Development Package General Information
Reference Manual 1-9

4. Set up the logic analyzer disk drive.

a. Put a blank, unformatted flexible disk into the front disk drive
of the logic analyzer.

b. If you are using an HP 1650A/B or HP 1651A/B, press the I/O
key, and select the Disk Operations field.

c. If you are using an HP 16500A, select the "Configuration" field
in the System Configuration Menu. Select the "Front Disk"
field to go to the System Front Disk Menu.

d. Format the blank disk by changing the "Load" field to "Format
Disk," then selecting "Execute."

The hardware is now set up to download an inverse assembler from the
PC.

General Information HP 10391B IAL Development Package
1-10 Reference Manual

Building a
Custom
Inverse
Assembler

As an overview, here are the steps needed to build an inverse
assembler for an HP 1650A/B, HP 1651A/B, HP 16510A/B, or
HP 16511B logic analyzer:

1. Write the inverse assembly algorithm.

The procedures to disassemble the information captured by
the logic analyzer are written using HP’s Inverse Assembly
Language (IAL). The environment, syntax, and constraints
of this language are presented in chapters 2 through 4, and
appendices A through C of this manual.

The software received with this product includes the source
code for the Intel 8085 and Motorola 68010 inverse
assemblers. These files may be helpful when first learning
the Inverse Assembly Language. Listings of these files are
included in appendices A and C.

This source code can be written with almost any PC text
editor. For a discussion of the requirements of the text
editor, see "Choosing a Text Editor" in chapter 4.

2. Assemble the source code.

The ASM.EXE program included on the software disk is
used to convert the ASCII source code written in step 1 into
a relocatable file that the logic analyzer can understand.

For a complete discussion of the assembler syntax and
options, see "Assembling the Source Code" later in this
chapter.

HP 10391B IAL Development Package General Information
Reference Manual 1-11

3. Download the relocatable file to the logic analyzer.

The IALDOWN.EXE program copies the relocatable file
generated in step 2 to a file on the flexible disk of the logic
analyzer. This transfer goes through the RS-232C port
configured as COM 1 or 2 on the PC.

IALDOWN.EXE prompts you for the source and
destination filenames, the file description, and for the
"Invasm" option required. If desired, this process can be
automated using a batch file. For all the details on
IALDOWN.EXE, see "Downloading the Relocatable File"
later in this chapter.

4. Build the logic analyzer configuration file.

The logic analyzer must now be told how to capture
information from the target system. This configuration is
entered from the analyzer’s front panel and must specify the
following:

a. What channels of the logic analyzer are monitoring the
address, data, and status information of the target system.

b. Which clocks are used to latch data from the target
system, and which clock edges are used.

If desired, the configuration file can also set up symbol
tables and special trace specifications.

Once the logic analyzer configuration is completed, the
inverse assembler can be loaded from the logic analyzer disk
to disassemble captured states.

For more detail on this step, see "Building the Configuration
File" later in this chapter.

The rest of this chapter discusses the details of steps 2, 3, and 4.
Writing the source code for an inverse assembler is the topic of
chapters 2 through 4, and the appendices of this manual.

General Information HP 10391B IAL Development Package
1-12 Reference Manual

Assembling the
Source Code

The source code for an inverse assembler must be converted into a
format that the logic analyzer understands. The ASM.EXE program in
this software package is an assembler that does this conversion.

To assemble source code, simply type

ASM < filename>

at the DOS prompt, where < filename> is the name of the file in
which the source code is stored.

For example, to assemble the source code for the 8085 inverse
assembler that was included with this software, type

ASM I8085.S

at the DOS prompt.

Here is what happens when ASM.EXE is executed:

1. The assembler reads the source code from the file you specified.
If it cannot find the file you specified, it will generate the message:

asm: Termination, Input source file not found.

2. The assembler then gets a special look-up table from the
subdirectory \ HP64700\ TABLES. If the assembler cannot find
this file or its subdirectory, it will generate the message:

asm: Termination, Unimplemented or invalid processor name

This message indicates that the Inverse Assembler Development
package was not installed correctly, or that the line:

SET HPTABLES= < disk> \ HP64700\ TABLES

should be added to the PC’s AUTOEXEC.BAT file. See the
installation section of this chapter for details.

HP 10391B IAL Development Package General Information
Reference Manual 1-13

3. The assembler then makes several passes through the source
code to convert the source code into a format the logic analyzer
can understand. The output of this step is called the relocatable
object code, or relocatable code for short.

If the assembler encounters any errors in the source code, it will
stop the assembly process and generate an error message on the
PC screen. A complete list of the assembler error messages is
provided in appendix D.

4. Finally, the assembler writes the relocatable code to a DOS file.
The DOS filename is the original filename with ".R" appended to
it.

For example, if you typed

ASM I8085.S

to assemble the 8085 source code, the relocatable code will be
placed in the file I8085.R.

For a complete list of the assembler error messages, see appendix D.

General Information HP 10391B IAL Development Package
1-14 Reference Manual

Assembler
Options

Options can be specified when calling the assembler to make
debugging the source code easier. These options are added to the
ASM command when starting the assembly process.

The full syntax of the ASM program is:

ASM [-o] [-l] [-n] [-e] [-x] [-t] < file> [> list_file]

Items in the square brackets ([..]) are optional parameters for this
program.

< file> is the name of the source file to be assembled.

HP 10391B IAL Development Package General Information
Reference Manual 1-15

Option Definitions ASM recognizes the following options which must be preceded by a
dash (-). Options can be concatenated after a single dash (for example,
-ox)

-o Generate a listing of the assembler results. This listing
includes the following:

a. Source statements with the associated object code,

b. Error messages, with a pointer to the error, and

c. A summary of errors with a descriptive list.

-l Same as -o

-n No listing of assembler results, except for errors (default).

-e Not implemented for the IAL

-x Adds a cross-reference to the listing generated by -o or -l.
This cross-reference shows all line numbers that have text in
the label field, including variable and constant declarations.
It also shows which lines reference these labels.

-t Causes assembly with no object code generation or
relocatable file creation.

General Information HP 10391B IAL Development Package
1-16 Reference Manual

For example, ASM -ox I8085.S would assemble the I8085.S file and
produce a listing and a cross-reference, as well as the relocatable file
I8085.R. The cross-reference is appended to the end of the listing and
would begin with:

FILE: I8085.S CROSS REFERENCE TABLE

LINE SYMBOL TYPE REFERENCES

 231 LOD_STO D 180

 40 LO_INPUT_STATUS P 644,657,672

 100 ILLEGAL_OPCODE D 196,199,387,417,447,492

 340 MOVES D 336

 675 LO_WAS_OPCODE D 672

Note
In the cross-reference table, the letter listed under the TYPE column
has the following definition:

A = Absolute
C = Common (COMN)
D = Data (DATA)
E = External
M = Multiple Defined
P = Program (PROG)
R = Predefined Register
S = Special
U = Undefined

HP 10391B IAL Development Package General Information
Reference Manual 1-17

The default output location for listings and the cross-references is the
PC screen. The listing output can be rerouted to a file using the
optional [> list_file]. For example, the command

ASM -ox I8085.S > I8085.L

would do the following:

1. Assemble the source code in I8085.S,

2. Create a listing of the assembler results, with a cross-reference,

3. Put the relocatable code in file I8085.R, and

4. Put the listing in file I8085.L.

To dump the listing directly to the PC’s printer, use

ASM -ox I8085.S > PRN

General Information HP 10391B IAL Development Package
1-18 Reference Manual

Downloading
the Relocatable
File

Once the relocatable file has been constructed with the ASM.EXE
program, the relocatable file should be downloaded to the disk in the
logic analyzer. The download process is handled by the
IALDOWN.EXE program.

To start the download, type IALDOWN at the DOS prompt.
IALDOWN will do the following:

1. Ask you for the filename to store the relocatable file under on the
logic analyzer’s disk. You should type in the filename after the
prompt, then press < Enter> .

2. Ask you for the file description that will be displayed in the logic
analyzer disk menu. You should type in the file description after
the prompt, then press < Enter> .

3. Ask you for the name of the relocatable file on the PC. You
should type in the name of the relocatable file, including the .R
extension, then press < Enter> .

4. Ask you which COM Port (1 or 2) you are using. You should
type in 1 or 2, depending on which COM Port you are using to
download to the HP 1650A/B, 1651A/B, or HP 16500A.

5. Ask you for the "Invasm" Field Option. Select the letter for the
"Invasm" option that is appropriate for your inverse assembler,
then press < Enter> .

Note
The "Invasm" field is used for microprocessors with limited status
information. For more information on using this field, see appendix B.

HP 10391B IAL Development Package General Information
Reference Manual 1-19

6. When the last question is answered, the program will read the
relocatable file from the PC disk and download it through COM
1 or 2 to the front disk of the logic analyzer. It also downloads
the filename and file description information. During the
download, the logic analyzer will display:

STORING FILE TO DISK

7. When the download is complete, the PC will return you to the
DOS prompt.

Here are the steps for downloading the 8085 inverse assembler
included with this software package. This example assumes the
relocatable file is in the same DOS subdirectory as the
IALDOWN.EXE program.

C> IALDOWN

Logic Analyzer Filename = I8085

Logic Analyzer File Description ____________________________________
(must be 32 characters or less) = INTEL 8085 INVERSE ASSEMBLER

Relocatable File on the PC = I8085.R

COM Port to use (1 or 2)

"Invasm" Field Options:

 A = No "Invasm" Field
 B = "Invasm" Field with no pop-up
 C = "Invasm" Field with pop-up. 2 choices in pop-up.
 D = "Invasm" Field with pop-up. 8 choices in pop-up.

Select the appropriate letter (A, B, C or D): A

General Information HP 10391B IAL Development Package
1-20 Reference Manual

Some notes on this process:

The logic analyzer filename can be no more than 10 characters long.
Valid characters for the filename are A-Z, 0-9, and _ (underscore).
The first character of the filename must be an uppercase alpha
character.

The logic analyzer file description must be 32 characters or fewer.
Notice that there is a line on the PC screen directly above the file
description. This line is 32 characters long and can be used as a "ruler"
for your file description.

The relocatable filename must include the .R extension.

Shortcuts When
Using IALDOWN

To save time when using IALDOWN, you may enter the answers to the
IALDOWN prompts when starting the program. When answering the
IALDOWN questions on the DOS command line, the following rules
must be followed:

1. Separate each answer by a space,

2. Enclose the file description in quotes ("..").

3. The logic analyzer filename, the length of the file description, and
the relocatable filename extension must follow the guidelines
shown in the step-by-step example.

For example, typing

IALDOWN I8085 "INTEL 8085 INVERSE ASSEMBLER" I8085.R 1 A

at the DOS prompt would download the 8085 inverse assembler
through COM 1 to the logic analyzer disk just like the previous
step-by-step example.

HP 10391B IAL Development Package General Information
Reference Manual 1-21

Batch Files The ASM and IALDOWN programs can be included in batch files to
automate the assembly and download process. The files 8085.BAT and
68010.BAT on the software disk are simple examples of batch files for
both the Intel 8085 and the Motorola 68010. The 8085.BAT file
contains two lines:

ASM I8085.S
IALDOWN < 8085.CMD

The first line tells the ASM.EXE program to assemble the file I8085.S.
The relocatable code will be placed in file I8085.R.

The second line of the batch file starts the IALDOWN program, with
the answers to the program prompts coming from file 8085.CMD.
8085.CMD has the following five lines:

I8085
INTEL 8085 INVERSE ASSEMBLER
I8085.R
1
A

These are the answers to IALDOWN prompts.

To execute this batch file, type

8085

at the DOS prompt. The batch file will then assemble the I8085.S
source code and download it to the logic analyzer disk, just like the
previous step-by-step example.

Note
If the answers to IALDOWN are placed in a separate file, as shown in
this example, each line of the "answer" file must be terminated with a
< CR> < LF> (carriage return, line feed).

General Information HP 10391B IAL Development Package
1-22 Reference Manual

Building the
Configuration
File

The logic analyzer’s configuration file stores the set-up needed by the
instrument to capture the states from the target system. A few rules
must be followed when configuring the logic analyzer for an inverse
assembler to work properly.

• The inverse assembler can only be used in State analysis.

• The following labels MUST be defined in the Format Menu:

Label Description

ADDR Label for the logic analyzer channels connected to the target system
Address Bus.

DATA Label for the logic analyzer channels connected to the target system
Data Bus.

STAT Label for the logic analyzer channels connected to the target system
Status Lines. These lines should indicate what kind of bus cycle was
captured by the logic analyzer.

• For the HP 16511B, the following labels must also be defined in
the Format menu:

Label Description

ADDR_B Label for the logic analyzer channels connected to the target system
auxiliary address bus for the HP 16511B.

DATA_B Label for the logic analyzer channels connected to the target system
auxiliary data bus for the HP 16511B.

HP 10391B IAL Development Package General Information
Reference Manual 1-23

The ADDR, DATA, ADDR_B, DATA_B, and STAT labels are
used with specific communication variables in the Inverse
Assembly Language. The relationship between the ADDR,
DATA, ADDR_B, DATA_B, and STAT labels and the
communication variables is shown in the table below:

Label Is Linked with the Communication Variable

ADDR INITIAL_ADDRESS and INPUT_ADDRESS

DATA INITIAL_DATA and INPUT_DATA

STAT INPUT_STATUS

ADDR_B INPUT_ADDR_B

DATA_B INPUT_DATA_B

Note
The ADDR_B and DATA_B variables are NOT used in the
HP 1650A/B, HP 1651A/B, and HP 16510A/B Logic Analyzers.

General Information HP 10391B IAL Development Package
1-24 Reference Manual

Because of the link between the labels and the communication
variables, the ADDR, DATA, and STAT labels must be defined
in the Format menu before the inverse assembler is loaded from
the logic analyzer disk.

The following steps may be used as a checklist when building the logic
analyzer configuration file:

1. In the logic analyzer Configuration menu, set up one of the
analyzers to be a State Analyzer.

2. Assign the pods to the State Analyzer that will capture the signals
in the target system. Each pod has 16 channels; assign the
number of pods necessary to acquire all of the needed signals.

3. In the State Format menu, enter the labels ADDR, DATA, and
STAT, and labels ADDR_B and DATA_B for the HP 16511B.
Assign the appropriate channels to each label.

4. Set up the clock specification to properly capture states from the
target system. The signals captured on the clock edge must be set
up 10 ns before the clock edge, and must hold typically 0 ns after
the clock edge. Refer to the reference manual for your logic
analyzer for exact specifications. Verify the timing of the state
clock using timing diagrams for the target system.

5. In the logic analyzer Format menu, set the Clock Period field to
correspond to how fast you are clocking in data. For more
information on the Clock Period field, refer to the reference
manual for your logic analyzer.

6. If desired, enter additional labels, define Symbol Tables, or set up
a Trace Specification for the logic analyzer.

HP 10391B IAL Development Package General Information
Reference Manual 1-25

Linking the
Inverse

Assembler
and the

Configuration File

A link can be established between the inverse assembler and the
configuration file. With a link established, loading the configuration
file from the disk will automatically load the inverse assembler at the
same time. Here is how to link the configuration file with the inverse
assembler:

1. Set up the logic analyzer to capture states from the target system.
This can be done manually by entering the configuration from the
front panel, or by loading a configuration file from the disk. The
configuration must follow the rules listed on page 1-23.

2. Insert the inverse assembler disk into the disk drive of the logic
analyzer. Load the inverse assembler file from this disk into the
analyzer you have configured for state analysis.

3. Go to the State Listing.

4. Go to the field under the DATA label that contains "Hex" and
select this field. A pop-up menu will appear on the logic analyzer
screen.

5. The pop-up will have seven fields. Select the field labeled
"Invasm" and the inverse assembler will display mnemonics in
place of hex data.

6. Store the configuration file to the inverse assembler disk. This
establishes a link between the configuration file and the inverse
assembler. When the configuration file is loaded it will
automatically load the inverse assembler.

General Information HP 10391B IAL Development Package
1-26 Reference Manual

Putting It All
Together

This chapter has discussed the steps needed to convert IAL source
code to an inverse assembler used with a logic analyzer. This final
example will put all the steps together.

In this section, you will actually assemble source code that was
provided with the software package and put it on the logic analyzer
disk. You will also create the configuration file for this inverse
assembler and link the configuration file to inverse assembler. The
example used is the inverse assembler for the Motorola 68010
microprocessor.

1. If you have not already done so, install the Inverse Assembler
Development Package on your PC.

2. Connect the hardware as described in this chapter. When
finished, you should have a blank, formatted disk in the logic
analyzer disk drive.

3. Assemble the 68010 source code that was provided with the
software package. Type

ASM I68010.S

at the DOS prompt. This will generate a relocatable file called
I68010.R

HP 10391B IAL Development Package General Information
Reference Manual 1-27

4. Download the relocatable code to the logic analyzer. Type

IALDOWN

at the DOS prompt. When prompted by the IALDOWN
program, answer the questions as follows:

Logic Analyzer Filename = I68010

Logic Analyzer File Description __
(must be 32 characters or less) = MOTOROLA 68010 INVERSE ASSEMBLER

Relocatable File on the PC = I68010.R

COM Port to use (1 or 2)

"Invasm" Field Options:

 A = No "Invasm" Field
 B = "Invasm" Field with no pop-up
 C = "Invasm" Field with pop-up. 2 choices in pop-up.
 D = "Invasm" Field with pop-up. 8 choices in pop-up.

Select the appropriate letter (A, B, C or D): B

This will download the inverse assembler to the logic analyzer
disk. When completed, you will be returned to the DOS prompt
on the PC.

General Information HP 10391B IAL Development Package
1-28 Reference Manual

5. Manually set up the logic analyzer Configuration and Format
menus as shown below.

6. Go to the Front Disk Drive menu and load the inverse assembler
into the State analyzer that you just set up.

HP 10391B IAL Development Package General Information
Reference Manual 1-29

7. Go to the State Listing menu and change "Hex" under the DATA
label to "Invasm." You should see a screen that looks like this:

8. Store the configuration to the logic analyzer disk. Use the
filename

C68010

and the description

MOTOROLA 68010 CONFIGURATION

General Information HP 10391B IAL Development Package
1-30 Reference Manual

If you want to test this inverse assembler, connect the logic analyzer to
a 68000 or 68010 target system using the general purpose probes and
grabbers. Connect the signals as follows:

Signal Logic Analyzer Signal Logic Analyzer
Name Pod:Bit Name Pod:Bit

 A0 Pod 2:Bit 0 D0 Pod 1:Bit 0
 A1 Pod 2:Bit 1 D1 Pod 1:Bit 1
 A2 Pod 2:Bit 2 D2 Pod 1:Bit 2
 A3 Pod 2:Bit 3 D3 Pod 1:Bit 3
 A4 Pod 2:Bit 4 D4 Pod 1:Bit 4

 A5 Pod 2:Bit 5 D5 Pod 1:Bit 5
 A6 Pod 2:Bit 6 D6 Pod 1:Bit 6
 A7 Pod 2:Bit 7 D7 Pod 1:Bit 7
 A8 Pod 2:Bit 8 D8 Pod 1:Bit 8
 A9 Pod 2:Bit 9 D9 Pod 1:Bit 9

 A10 Pod 2:Bit 10 D10 Pod 1:Bit 10
 A11 Pod 2:Bit 11 D11 Pod 1:Bit 11
 A12 Pod 2:Bit 12 D12 Pod 1:Bit 12
 A13 Pod 2:Bit 13 D13 Pod 1:Bit 13
 A14 Pod 2:Bit 14 D14 Pod 1:Bit 14

 A15 Pod 2:Bit 15 D15 Pod 1:Bit 15
 A16 Pod 3:Bit 8 R/W Pod 3:Bit 0
 A17 Pod 3:Bit 9 LDS Pod 3:Bit 1
 A18 Pod 3:Bit 10 UDS Pod 3:Bit 2
 A19 Pod 3:Bit 11 VMA Pod 3:Bit 3

 A20 Pod 3:Bit 12 FC0 Pod 3:Bit 4
 A21 Pod 3:Bit 13 FC1 Pod 3:Bit 5
 A22 Pod 3:Bit 14 FC2 Pod 3:Bit 6
 A23 Pod 3:Bit 15 BGACK Pod 3:Bit 7

 GND Pod 2:Gnd AS Pod 1:J Clk
 GND Pod 3:Gnd GND Pod 1:Gnd

HP 10391B IAL Development Package General Information
Reference Manual 1-31

Press "RUN" on the logic analyzer to capture bus activity. Under the
inverse assembler field, you will see the value of the data bus, plus the
kind of bus cycle captured by the logic analyzer.

To see the 68010 mnemonics, do the following:

1. Identify a state that you know contains the first state of an opcode
fetch.

2. Scroll this state to the top line of the screen.

3. Select the "Invasm" field at the top of the display.

The inverse assembler will display 68010 mnemonics for the entire
screen.

 MS-DOS is a registered trademark of Microsoft Corporation.

General Information HP 10391B IAL Development Package
1-32 Reference Manual

2
Inverse Assembler Operation

Introduction This chapter provides an overview of the inverse assembly process. It
explains how the logic analyzer captures data and builds a display, and
shows how an inverse assembler fits into this process. It also walks you
through the steps needed to properly inverse assemble a
microprocessor instruction.

This overview discusses concepts of inverse assembly without going
into detail about the actual Inverse Assembly Language syntax. Syntax
details are introduced in chapter 3, and a complete language reference
is provided in chapter 4.

HP 10391B IAL Development Package Inverse Assembler Operation
Reference Manual 2-1

Inverse
Assembler
Operation

The main function of the inverse assembler is to decode data captured
by the logic analyzer. This is done as follows:

1. Using the logic analyzer system software, you specify what the
logic analyzer should trigger on and what states should be stored.
This information is called the "Trace Specification."

2. When the "RUN" key is pressed, the system software loads the
acquisition hardware with the trace specification, and starts the
acquisition. The trace will continue until the trace specification is
satisfied or until you stop the acquisition.

3. Once the acquisition has stopped, the Address, Data, and Status
information captured by the logic analyzer hardware is passed to
the system software routines that are used to build the logic
analyzer display.

4. For each line on the screen, the system software does the
following:

a. Puts the Address information into the Display buffer.

b. Calls the inverse assembler to convert the captured binary
Data information into text. Then it places this text into the
Display buffer.

 c. Puts additional labels, including the Status information and
the Time count, into the Display buffer.

5. The system software displays the contents of the Display buffer
and returns control of the instrument to the front panel.

This process is shown in Figure 2-1.

Inverse Assembler Operation HP 10391B IAL Development Package
2-2 Reference Manual

Figure 2-1. How an Inverse Assembler is Used

HP 10391B IAL Development Package Inverse Assembler Operation
Reference Manual 2-3

Inverse
Assembly
Process

To show the inverse assembly process, we will use a very simple
program for the 8085 microprocessor, shown in example 1.

Example 1:

Location

0100
0103
0106

Object Code

32 0601
C3 0001
00

Line

1 "8085"
2
3
4
5

Source Line

ORG 0100H
STA 0106H
JMP 0100H
NOP

During execution, the STA instruction on line 3 stores the contents of
the accumulator into the memory location at address 106H. In the next
instruction, program control jumps back to STA and the process
repeats in a never ending loop.

If the bus cycles generated by this program were captured by a logic
analyzer, the display shown in Example 2 would be expected:

Example 2:

 Line # ADDR DATA STAT Time
Hex Hex Bin Rel

0000 0100 32 0011
0001 0101 06 0010 2.00 uS
0002 0102 01 0010 1.52 uS
0003 0106 00 0001 1.48 uS
0004 0103 C3 0011 1.52 uS
0005 0104 00 0010 2.00 uS
0006 0105 01 0010 1.48 uS
0007 0100 32 0011 1.52 uS
0008 0101 06 0010 2.00 uS
0009 0102 01 0010 1.52 uS
0010 0106 00 0001 1.48 uS

etc.

Inverse Assembler Operation HP 10391B IAL Development Package
2-4 Reference Manual

If an 8085 Inverse Assembler was used to interpret the captured
information, the following screen would be seen:

Example 3:

Line # ADDR 8085 Mnemonic STAT Time
Hex Hex Bin Rel

0000 0100 STA 0106 0011
0001 0101 06 memory read 0010 2.00 uS
0002 0102 01 memory read 0010 1.52 uS
0003 0106 00 memory write 0001 1.48 uS
0004 0103 JMP 0100 0011 1.52 uS
0005 0104 00 memory read 0010 2.00 uS
0006 0105 01 memory read 0010 1.48 uS
0007 0100 STA 0106 0011 1.52 uS
0008 0101 06 memory read 0010 2.00 uS
0009 0102 01 memory read 0010 1.52 uS
0010 0106 00 memory write 0001 1.48 uS

etc.

The "8085 Mnemonic" field in Example 3 replaced the "DATA" field in
Example 2.

To build the display in Example 3, the system software formats the
screen and displays the "Line # " and "ADDR" information. Then the
inverse assembler is called to fill in the "8085 Mnemonic" section. Next,
the "STAT" and "Time" information is filled in by the system software.
This process is repeated for every line on the display.

HP 10391B IAL Development Package Inverse Assembler Operation
Reference Manual 2-5

For the purposes of discussion, we will just look at the STA instruction
found in line 3 of Example 1. The 8085 is an 8-bit microprocessor with
a 16-bit addressing range. The STA instruction stores the value of the
8-bit accumulator into the memory location specified in the operand
field. This instruction gets broken down into the following object code:

8-bit opcode 16-bit address

 XX XXXX

The analysis hardware would have captured the following information
when tracing the execution of this instruction:

State ADDR

0 Address of opcode
1 Address of low order address byte
2 Address of high order address byte
3 Address of store (states 2+ 3)
4 Address of next instruction

State DATA STAT

 0 Opcode value Opcode fetch
 1 Low order address byte Operand memory read
 2 High order address byte Operand memory read
 3 Accumulator data Memory write
 4 Next opcode value Opcode fetch

Inverse Assembler Operation HP 10391B IAL Development Package
2-6 Reference Manual

In our example, the actual data captured by the analysis hardware
follows:

State ADDR DATA STAT

 0 0100 32 Opcode fetch
 1 0101 06 Operand memory read
 2 0102 01 Operand memory read
 3 0106 00 Memory write
 4 0103 C3 Opcode fetch

The first step for the inverse assembler is to check the status of the
state being disassembled. If the state is an opcode fetch, the inverse
assembler should decode it into the appropriate mnemonic. If the state
is not an opcode fetch, it should display the captured data and the type
of cycle captured.

In this example, the first state captured is an opcode fetch with 32H on
the data bus. The inverse assembler should branch to an area of the
code that will determine the mnemonic for this opcode. For the 8085,
32H is the object code for the STA instruction, so the inverse
assembler will place the following in the output display buffer:

STA

The 8085 STA instruction is a multi-byte instruction. The two bytes
following the opcode indicate the 16-bit address where the contents of
the accumulator are to be stored in memory. The inverse assembler
must be written to look forward to the next two states to properly
decode the destination address of the STA instruction.

The first state following the STA instruction is the lower byte of the
destination address; the second state is the upper byte. The inverse
assembler will read the data in these two states, combine the results
into a single 16-bit quantity and display this address after STA in the
display buffer. After doing this, the output display buffer will contain:

STA 0106

HP 10391B IAL Development Package Inverse Assembler Operation
Reference Manual 2-7

The inverse assembler has now decoded the instruction back into its
mnemonic form. Next, it returns to the system software to display the
assembly instructions, as follows:

Line # ADDR 8085 Mnemonic STAT Time
Hex Hex Bin Rel

0000 0100 STA 0106 0011

The inverse assembler will then be called for the next three analysis
states that have been used to complete the STA instruction. It checks
to see if these states are opcode fetches, and since they are not, the
inverse assembler will simply display the status of these states. The first
two states after the opcode represent the address of the operand. They
are labeled as "read" states. The third state is the result of the STA
instruction and is labeled as a "write" operation. Note that the address
and mnemonic information show the actual data that was written and
the location of the write operation.

Line # ADDR 8085 Mnemonic STAT Time
Hex Hex Bin Rel

0000 0100 STA 0106 0011
0001 0101 06 memory read 0010 2.00 uS
0002 0102 01 memory read 0010 1.52 uS
0003 0106 00 memory write 0001 1.48 uS

This completes the task the inverse assembler would normally be
expected to perform in displaying the results of the STA instruction
execution. The inverse assembler would be called again for the fifth
analysis state. In this example, it is the jump (JMP) instruction.

Inverse Assembler Operation HP 10391B IAL Development Package
2-8 Reference Manual

Summary The following points are the key points of this chapter:

• An inverse assembler is used to convert the data captured by the
logic analyzer into text on the logic analyzer display. Often, this
text is microprocessor mnemonics.

• The inverse assembler is called once for each state to be
displayed on the screen.

• The first thing an inverse assembler should do when called is
check the status information for that state. If the status indicates
an opcode fetch, the inverse assembler should decode the state
into the proper mnemonic. If the state is not an opcode fetch, the
inverse assembler should display the captured data and the cycle
type.

• When decoding opcode fetches, it may be necessary to look
forward in the acquired data to completely decode a multi-byte
instruction.

HP 10391B IAL Development Package Inverse Assembler Operation
Reference Manual 2-9

Inverse Assembler Operation HP 10391B IAL Development Package
2-10 Reference Manual

3
Writing Inverse Assembler Code

Introduction The previous chapter presented on overview of what an inverse
assembler is, and what kind of tasks it needs to perform. This chapter
will detail how to implement these tasks with Hewlett-Packard’s
Inverse Assembly Language (IAL).

Inverse assemblers written with the IAL will execute on HP 1650A/B,
HP 1651A/B, HP 16510A/B, and HP 16511B Logic Analyzers. The
first part of this chapter describes the environment inside the logic
analyzer where an inverse assembler executes. The second half of this
chapter will discuss some of the IAL instructions that can be used to
perform specific inverse assembly tasks.

A complete description of IAL instructions and syntax is provided in
chapter 4.

IAL
Environment

Hewlett-Packard’s Inverse Assembly Language defines a simple
environment where an inverse assembler is executed. The major
elements of this environment are:

1. The logic analyzer acquisition memory,

2. The ACCUMULATOR,

3. Pre-defined communication variables which give the
ACCUMULATOR access to the acquisition memory,

4. User-defined variables for temporary storage during inverse
assembly, and

5. The output display buffer.

The logic analyzer acquisition memory is part of the logic analyzer
hardware. All other parts of the IAL environment are part of the
system software that build up this virtual machine. A block diagram of
the environment is shown in figure 3-1 on page 3-5.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-1

The IAL environment can be thought of as a simple pseudo-processor
with a single accumulator. The inverse assembly routine runs on this
pseudo-processor. The inverse assembler reads captured information
from the acquisition memory, decodes this information into text (such
as a microprocessor’s mnemonics) and places the text into the output
display buffer. As mentioned in the previous chapter, the inverse
assembler will be called once for each state to be displayed.

Instructions coded in IAL are executed much like those in assembly
language. The instructions are executed one at a time and in sequential
order. The GOTO and CALL instructions are used to branch to
another area of the inverse assembler. IF and CASE statements can be
used for conditional testing.

Similar to simple microprocessor systems, the inverse assembler code is
stored in a separate code space. A program counter points to the
current instruction being executed by the IAL interpreter. A stack
pointer and stack are used in conjunction with subroutine calls. The
code space, program counter, stack pointer, and stack cannot be
directly accessed by the IAL instructions.

The Logic
Analyzer
Acquisition
Memory

The logic analyzer’s memory is an array of bits that is up to 80 channels
wide (160 channels wide on the HP 16511B) and up to 1024 states
deep. The channels are grouped under specific labels in the logic
analyzer’s Format menu: ADDR, DATA, ADDR_B, DATA_B, and
STAT. These labels are used to identify to the inverse assembler which
channels were used for capturing the Address, Data, and Status
information for each state captured.

The information captured by the logic analyzer is treated as Read Only
Memory by the inverse assembler.

The
Accumulator

The heart of the IAL environment is the ACCUMULATOR. The
ACCUMULATOR is a single 32-bit register that can be used for the
following:

• It can access the logic analyzer acquisition memory through
pre-defined communication variables.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-2 Reference Manual

• It can read and write variables defined by the user.

• Variables read into the ACCUMULATOR can be written to the
output display buffer.

• It can be operated on by arithmetic and logical operations.

• It can be tested using IF and CASE instructions.

Memory-to-memory operations are not supported by the inverse
assembly language. To move contents from one variable to another,
the contents must first be loaded into the ACCUMULATOR from the
source location, then stored to the destination location.

IAL Variables There are two types of variables used in the inverse assembly language:

1. Communication variables provided by the IAL interpreter.
Through these variables, the inverse assembler can read the
address, data, and status information captured by the logic
analyzer. These variables can also be used to tag states that have
already been used for inverse assembly, and can also indicate
which captured states contain the first byte of an instruction
fetch. Table 3-3 at the end of this chapter lists the
communication variables.

2. Variables declared by an inverse assembler using the "VAR"
pseudo. These can be used for holding temporary values or
setting flags for internal use.

All variables and the ACCUMULATOR are treated as 32-bit integers,
as shown in the following diagram:

MSB LSB

Bit 31 Bit 0

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-3

The ADD and SUBTRACT instructions perform two’s complement
arithmetic on all variables, which means values can be added and
subtracted to get a correct positive or negative result. The highest
order bit (31) will be 0 for positive and 1 for negative results. This bit
can be tested to see if the value is positive or negative.

All compares done with the "IF" instruction are unsigned. Take care
when comparing variables. Since negative numbers will have the most
significant bit set in two’s complement, the "IF" statement will treat
negative numbers as greater than positive numbers. For example, -1
(0FFFFFFFFH in two’s complement) will be treated as larger than 1
(00000001H in two’s complement).

The Output
Display Buffer

The output display buffer is a write-only memory where ASCII text and
numbers are written for each state of the inverse assembly display.
Each state can print up to four lines with up to 64 characters per line.

Developing an
Inverse
Assembler

The development process for an inverse assembler uses the following
steps:

1. Write the inverse assembler source code.

2. Assemble the source code into relocatable code.

3. Download the inverse assembler to a logic analyzer disk.

4. Load the inverse assembler into the logic analyzer.

5. Test and verify the inverse assembler’s operation.

This section describes how to write the inverse assembler source code
(Step 1 above) that can be properly assembled by the assembler. Steps
2 through 5 are discussed in other sections of this manual. The
examples given in this chapter are good examples of the IAL syntax.
Refer to chapter 4 for a complete definition of the IAL syntax and
instructions.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-4 Reference Manual

Figure 3-1. The IAL Environment

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-5

A Simple
Inverse
Assembler

The source code for a simple, yet complete, inverse assembler is shown
below:

1 "IAL"
2
3 OUTPUT "Inverse assembler not present"
4 RETURN

If this code were assembled, downloaded to a logic analyzer disk, then
loaded into the logic analyzer, typical results would look like:

Label > ADDR DATA STAT Time
Base > Hex Invasm Bin Rel

+ 0000 0396 Inverse assembler not present 0110
+ 0001 0397 Inverse assembler not present 0110 680 nS
+ 0002 6106 Inverse assembler not present 1100 920 nS
+ 0003 03C5 Inverse assembler not present 0110 7.24 uS
+ 0004 03C6 Inverse assembler not present 0110 680 nS
+ 0005 6008 Inverse assembler not present 1101 920 nS
+ 0006 0396 Inverse assembler not present 0110 496.6 uS
+ 0007 0397 Inverse assembler not present 0110 680 nS
+ 0008 6006 Inverse assembler not present 1100 920 nS
+ 0009 03C5 Inverse assembler not present 0110 7.24 uS
+ 0010 03C6 Inverse assembler not present 0110 640 nS
+ 0011 6008 Inverse assembler not present 1101 920 nS
+ 0012 0396 Inverse assembler not present 0110 524.8 uS
+ 0013 0397 Inverse assembler not present 0110 640 nS
+ 0014 6006 Inverse assembler not present 1100 920 nS
+ 0015 03C5 Inverse assembler not present 0110 7.28 uS

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-6 Reference Manual

This screen was generated, starting with line number 0000, as follows:

1. The logic analyzer system software displayed the line number of
the state and the information captured under the ADDR label.

2. The system software called the inverse assembler. In this case,
the instruction in line 3 of the source code puts the "Inverse
assembler not present" message in the output display buffer.

3. When the RETURN instruction was executed in line 4, control
was passed back to the system software.

4. The system software displayed the information captured under
the STAT and Time labels.

Steps 1 through 4 were repeated 16 times until the logic analyzer screen
was filled.

This example illustrates some important principles:

1. The inverse assembler will be called once for every state to be
displayed on the screen.

2. Executing a RETURN instruction when the inverse assembler is
not in a subroutine will end the inverse assembly for the current
state, and will return control back to the logic analyzer system
software.

Most inverse assemblers are more complex than the previous example.
The following sections will discuss how to implement additional inverse
assembly tasks. To examine a complete inverse assembler, see
appendix A for an Intel 8085 inverse assembler, and appendix C for a
Motorola 68010 inverse assembler.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-7

Reading
Acquisition
Memory

An inverse assembler is used to convert the data captured by the logic
analyzer into a display that is meaningful to the user. Usually,
microprocessor mnemonics are displayed.

The first step, then, of an inverse assembler is to read the information
captured by the logic analyzer. The inverse assembler routines can
then decode this information into the appropriate text.

The following section demonstrates how an inverse assembler can read
the logic analyzer’s acquisition memory. As an illustration, the STA
instruction for the Intel 8085 microprocessor will be decoded. An
overview of the decoding process for this instruction was presented in
chapter 2. If necessary, review chapter 2 at this time.

Decoding the
STA Instruction

When the Intel 8085 executes the STA instruction, a logic analyzer
captures the following raw data:

ADDR DATA STAT Time
Line # Hex Hex Bin Rel

0000 0100 32 0011
0001 0101 06 0010 2.00 uS
0002 0102 01 0010 1.52 uS
0003 0106 00 0001 1.48 uS
0004 .

.

.

ADDR is the label assigned to the group of logic analyzer channels
probing the 8085 address bus, DATA is the label for the channels on
the 8085 data bus, and STAT is the label for the logic analyzer channels
probing the 8085 status and control lines. STAT will be used by the
inverse assembler to determine what kind of 8085 bus cycle was
captured by the logic analyzer. These labels were set up in the logic
analyzer’s Format menu.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-8 Reference Manual

Line 0000 of this acquisition contains the object code for the STA
instruction. Line 0001 has the lower byte of the STA destination
address. Line 0002 has the upper byte of the destination address and
line 0003 holds the actual write operation of the STA instruction.

If the logic analyzer were to inverse assemble this captured
information, here is what would happen:

As the logic analyzer builds the display, it will print 0000 under the
"Line # " column and 0100 under the ADDR label. At this point, the
system software calls the inverse assembler.

When an inverse assembler is called, the system software initializes
pre-defined variables called "Communication Variables." These
variables allow the inverse assembler to read the acquisition memory.
The following communication variables get initialized by the system
software when an inverse assembler is called:

INITIAL_ADDRESS
INITIAL_DATA
INPUT_ADDRESS
INPUT_DATA
INPUT_ADDR_B
INPUT_DATA_B
INPUT_STATUS
INPUT_ERROR
INPUT_TAG

Refer to table 3-3 on page 3-30 for a description of these
communication variables.

Note
INPUT_ADDR_B and INPUT_DATA_B are only used with the
HP 16511B Logic Analyzer.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-9

When decoding line 0000, the communication variables will be
initialized as follows:

Communication Variable Initialized to:

INITIAL_ADDRESS 0100H
INITIAL_DATA 32H
INPUT_ADDRESS 0100H
INPUT_DATA 32H
INPUT_STATUS 0011B
INPUT_ERROR 0
INPUT_TAG 0

Using the instruction

LOAD INPUT_STATUS

will bring the STAT value for line 0000 (0011B) into the
ACCUMULATOR. The inverse assembler can then test the
ACCUMULATOR to see if this state is an opcode fetch. In this
inverse assembler, 0011B is the status for an opcode fetch. The inverse
assembler can now begin decoding the opcode.

The instruction

LOAD INPUT_DATA

will bring the DATA value for line 0000 (32H) into the
ACCUMULATOR. The inverse assembler can decode this into the
STA instruction using a lookup table. When the opcode has been
properly identified in the lookup table, the instruction

OUTPUT "STA"

will place the string "STA" into the output display buffer.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-10 Reference Manual

Decoding the
Destination
Address of the
STA Instruction

As discussed in chapter 2, STA is a multi-byte instruction. The
destination address for this instruction is held in the next two memory
locations after the STA object code. The 8085 will fetch the object
code for the STA instruction, then fetch the contents of the next two
memory locations to determine the destination address. To properly
inverse assemble the STA instruction, the inverse assembler must
duplicate the microprocessor’s operation. It will have to look ahead of
the current state being inverse assembled to the states that contain the
STA instruction’s destination address.

The Inverse Assembly Language provides the INPUT command to
allow an inverse assembler to read information from any state in the
acquisition memory. The INPUT command is used to "point" to the
desired state. When that state is located in the acquisition memory, the
following communication variables get initialized with the contents of
that state:

INPUT_ADDRESS
INPUT_DATA
INPUT_ADDR_B
INPUT_DATA_B
INPUT_STATUS
INPUT_ERROR
INPUT_TAG

Refer to table 3-3 on page 3-30 for a description of these
communication variables.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-11

The INPUT instruction can search in one of two modes, absolute or
relative. In the absolute mode, an address is passed to the INPUT
instruction. The INPUT instruction then searches forward through the
acquisition memory until it finds a state whose ADDR sample matches
the address passed to the instruction.

In the relative mode, the number of states is passed to the INPUT
instruction. The INPUT instruction then goes forward or backwards
through acquisition memory the specified number of states. In both
cases, the INPUT search begins at the original state being
disassembled. When the desired state is found, the communication
variables listed on the previous page are loaded with the values in that
state.

Here is how the INPUT instruction is used by the Intel 8085 inverse
assembler to decode the destination address of the STA instruction:

1. The destination address of the STA instruction is in the two
memory locations following the STA object code. The first step,
then, is to store the address of the STA object code in a variable
that can be modified later by the inverse assembler.

Since the inverse assembler is currently decoding the state with
the STA object code, the following instructions will put the
address of the STA object code in a variable for later use:

LOAD INPUT_ADDRESS ;Load the ACCUMULATOR with the
;address of the STA object code

STORE NEW_ADDRESS ;Store the contents of the
;ACCUMULATOR into the variable
;NEW_ADDRESS

In this example, the STA instruction was fetched from address
0100H. These instructions will put the value 0100H into
NEW_ADDRESS.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-12 Reference Manual

2. To calculate where the low byte of the destination address is
located, add one to the address of the STA object code:

INCREMENT NEW_ADDRESS ;Adds one to NEW_ADDRESS

NEW_ADDRESS now holds the value 0101H.

3. The address calculated in step 2 can be used with the INPUT
instruction to point to the state that has the low byte of the
destination address, as follows:

INPUT ABS,NEW_ADDRESS ;Point to the state with the value of
;NEW_ADDRESS in the ADDR column.

When the correct state is found, the INPUT instruction will
initialize the following communication variables:

Communication Variable Initialized to:

INPUT_ADDRESS 0101H
INPUT_DATA 06H
INPUT_STATUS 0010B
INPUT_ERROR 0
INPUT_TAG 0

4. The value of DATA for this state should be saved to calculate the
destination address.

LOAD INPUT_DATA ;Load the ACCUMULATOR with the low
;byte of the destination address

STORE LOW_BYTE ;Store the contents of the
;ACCUMULATOR into the variable
;LOW_BYTE

For this example, these instructions will put the value 06H into
LOW_BYTE.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-13

5. To calculate where the high byte of the destination address is
located, add one more to the address of the STA object code:

INCREMENT NEW_ADDRESS ;Adds one to NEW_ADDRESS

NEW_ADDRESS now holds the value 0102H.

6. The INPUT instruction is used again. This time to point to the
state that has the high byte of the destination address:

INPUT ABS,NEW_ADDRESS ;Point to the state with the value of
;NEW_ADDRESS in the ADDR column.

When this state is found, the communication variables will be
initialized as follows:

Communication Variable Initialized to:

INPUT_ADDRESS 0102H
INPUT_DATA 01H
INPUT_STATUS 0010B
INPUT_ERROR 0
INPUT_TAG 0

7. The value of DATA for this state should also be saved for
calculating the destination address.

LOAD INPUT_DATA ;Load the ACCUMULATOR with the high
;byte of the destination address

STORE HIGH_BYTE ;Store the contents of the
;ACCUMULATOR into the variable
;HIGH_BYTE

These instructions put the value 01H into HIGH_BYTE.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-14 Reference Manual

8. The inverse assembler now has all the information needed to
calculate the STA instruction’s destination address. After this
calculation, the output display buffer should contain:

STA 0106

This completes the inverse assembly process for line 0000 in this
example. The inverse assembler will now return control to the logic
analyzer’s system software. The system software will print the values
under the STAT and Time label, then begin this process all over again
for line 0001 on the display.

Note
A complete listing of the Intel 8085 inverse assembler is given in
appendix A. The basic steps presented above are the steps used by the
inverse assembler in decoding the STA instruction.

The inverse assembler adds several routines to check for errors during
the inverse assembly process. These routines were omitted here to add
clarity.

Additional
Capabilities of
the Input
Instruction

The INPUT instruction can also include patterns in the STAT column
when searching for a specific state. Two other communication
variables are used for this task. The QUALIFY_VALUE pseudo
instruction defines the pattern in the STAT column that must also be
present in order for a search to succeed. For example, the
QUALIFY_VALUE could have been set to 0010B in the previous
example to help insure that the correct state had been found. In the
case of step 3, the INPUT instruction would have searched for a state
in the acquisition memory with 0101H in the ADDR column and 0010B
in the STAT column.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-15

The QUALIFY_MASK pseudo instruction further modifies the
QUALIFY_VALUE. This communication variable defines which bits
in QUALIFY_VALUE should be ignored during the INPUT search.
The QUALIFY_MASK operand is considered to be a 32-bit mask
where a "0" represents a "don’t care" state and a "1" represents a "care"
state. For example, if QUALIFY_MASK were set to 0001B, with a
QUALIFY_VALUE of 0010B, the INPUT instruction would only look
for a 0 in the LSB.

QUALIFY_VALUE and QUALIFY_MASK are enabled by adding
the QUALIFIED option to the INPUT instruction operand.

To speed up the operation of the inverse assembler, the
SEARCH_LIMIT command can be used to specify the number of
states that will be searched to find the required data. This limit
optimizes the processing by not allowing the entire acquisition memory
to be searched for every INPUT instruction. If the QUALIFIED
option is selected for the INPUT instruction, the SEARCH_LIMIT
only applies to the number of QUALIFIED states.

Note
SEARCH_LIMIT may not provide an effective limit when the
INPUT,QUALIFIED instruction is executed. In this case,
SEARCH_LIMIT counts the number of states where the value of
STAT meets the QUALIFIED condition set up using
QUALIFY_VALUE and QUALIFY_MASK. If the logic analyzer did
not capture any states meeting the QUALIFIED condition, the inverse
assembler will still search the entire acquisition memory.

If an INPUT instruction is terminated because the SEARCH_LIMIT is
encountered, the communication variable INPUT_ERROR will be set
to a non-zero value.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-16 Reference Manual

Putting Text
into the Output
Display Buffer

Each state can write up to four lines into the output display buffer, with
up to 64 characters per line. The OUTPUT instruction is used to place
text and numbers into the buffer.

The output display buffer does not automatically wrap text to the next
line on the display when the end of a line is reached. The inverse
assembler must check the position in the display buffer and generate a
new line to avoid writing text off the end of a line.

The FETCH_POSITION instruction allows the inverse assembler to
read where the last character was printed in the display buffer, and
NEW_LINE allows the inverse assembler to generate a new line in the
display buffer. When NEW_LINE is executed, the next OUTPUT
instruction will begin printing in column one of the new line. No
commands are provided to allow the OUTPUT instruction to print to a
previous line.

Other instructions associated with an OUTPUT instruction include:

DEFAULT_WIDTH Defines the width of the output display
buffer.

POSITION Allows the inverse assembler to move to a
specific column in the display buffer, or
relative to where the last character was
written.

FORMAT Defines the format for displaying the
contents of the ACCUMULATOR.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-17

Generating
Symbolic
Addresses

In the 8085 example, the destination address for the STA instruction
was displayed in hexadecimal. Normally, assembly language programs
are written with symbolic references to addresses. The programmer
uses an assembler and linker to convert these symbolic references to
absolute addresses.

An inverse assembly display with absolute addresses may be difficult to
interpret if the original assembly language program was written using
symbolic references.

The HP 1650A/B, HP 1651A/B, HP 16510A/B, and HP 16511B logic
analyzers include symbol tables for converting the raw captured data
under a label into text. If the "base" of a label is set to "symbol," the
value of a state will be replaced by the symbol defined in the logic
analyzer symbol tables. For example, if the ADDR symbol table
defines the pattern 0C000H as the text "KBD", then KBD will be
displayed in place of 0C000H under the ADDR label. (See the logic
analyzer’s operating manual for more detail on symbol tables).

The ADDR symbol table can also be used by the inverse assembler
when the ADDR base is set to symbol. Using the ADDR symbol table
with an inverse assembler will provide a display that resembles the
assembly language source code.

The instruction to generate symbolic addresses using the ADDR
symbol table is:

IF_NOT_MAPPED THEN < result>

This instruction will check the ADDR symbol table for a symbol with a
value or range that corresponds to the value in the ACCUMULATOR.
It would normally be used as follows:

IF_NOT_MAPPED THEN OUTPUT ACCUMULATOR,FORMAT

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-18 Reference Manual

When this instruction is executed, the following three cases are
possible:

Case 1: The value in the ACCUMULATOR matches a pattern in the ADDR
symbol table.

In this case, the symbol in the ADDR symbol table will be written to
the output display buffer. The OUTPUT ACCUMULATOR,
FORMAT portion of this instruction will not be executed.

Note
This case applies only to symbols that are defined using "Pattern" in the
logic analyzer symbol table.

Example:

JMP PORT_ADDRESS

Case 2: The value in the ACCUMULATOR falls within a range defined in the
ADDR symbol table.

In this case, the symbol associated with the range will be written to the
output display buffer. The ACCUMULATOR will be set to the offset
from the beginning of the range. The < result> part of the instruction
will then be executed to display this offset.

Note
This case applies only to symbols that are defined using "Range" in the
logic analyzer symbol table.

Example:

JMP SUBROUTINE+ 23H

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-19

Case 3: The value in the ACCUMULATOR does not match a pattern in the
ADDR symbol table and does not fall within a range defined in the
symbol table. (That is, both Case 1 and Case 2 above are false).

In this case, the value of the ACCUMULATOR will be displayed using
the < result> part of the instruction.

Example:

JMP 0FFFFH

Note
The IF_NOT_MAPPED instruction can only access the ADDR
symbol table if the base for ADDR is set to symbol.

Hints on
Parsing an
Opcode

The inverse assembler can be written with the CASE_OF or IF
instructions to identify opcodes and status information for your
microprocessor. Tables or other methods can also be used for parsing
opcodes.

The speed and size of the inverse assembler is dependent on the
structure of the inverse assembler code. The inverse assembler
instruction set is designed to produce efficient code; however, there are
techniques that will increase this efficiency.

First, study the instruction set for the target microprocessor thoroughly
before designing the inverse assembler code. This study should reveal
the natural breaks in the opcode values. A common approach is to
divide the instruction set roughly in half by using the most significant
bit as the breakpoint. Other approaches are to parse the opcode based
on the number of operands in the instruction or to parse it based on the
addressing modes. A microprocessor with multiple accumulators tends
to have the same operations performed on each accumulator. This is a
convenient way to further parse the opcode. These are some of the
possibilities in parsing an opcode. You should study an instruction set
and decide on the best approach for your needs.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-20 Reference Manual

Using
INPUT_TAG to
Mark States

While disassembling a state, it may be useful to mark states pointed to
by the INPUT instruction. The mark can be used during subsequent
inverse assembler calls to disassemble this state with a special routine.

For example, many microprocessors do not differentiate externally
between memory reads that fetch data from memory and memory
reads that fetch operands for a multi-byte instruction. The inverse
assembler can mark a state as an operand when decoding the
multi-byte instruction. When this marked state is called for inverse
assembly, the inverse assembler can read the tag and display "operand"
instead of "memory read."

To tag states:

Each state of the logic analyzer’s acquisition memory has a TAG that
can be written to and read by the inverse assembler. The lower 16
bits of the TAG are user-tags and can be directly accessed by the
inverse assembler.

The inverse assembler writes to the TAG using the TAG_WITH
instruction. The TAG is read using the INPUT_TAG
communication variable. INPUT_TAG is read the same way as the
other INPUT communication variables discussed previously.

Bits 16 and 17 of the TAG are system tags. These tags are used to
inverse assemble microprocessors with incomplete status. For a
thorough discussion of the use of bits 16 and 17, see appendix B.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-21

Other
Communication
Variables

This chapter has discussed the following communication variables:

INPUT_ADDRESS INITIAL_ADDRESS
INPUT_ADDR_B INPUT_DATA_B
INPUT_DATA INITIAL_DATA
INPUT_STATUS SEARCH_LIMIT
INPUT_ERROR QUALIFY_VALUE
INPUT_TAG QUALIFY_MASK

The remaining communication variables in the IAL environment are:

INITIAL_FLAGS INITIAL_OPTIONS
RETURN_FLAGS TASK

INITIAL_FLAGS and INITIAL_OPTIONS are used when the
microprocessor does not provide enough status information to uniquely
determine the first byte of an opcode fetch. Their use is detailed in
appendix B. The RETURN_FLAGS and TASK variables are
explained in the following sections.

RETURN_FLAGS RETURN_FLAGS indicate the result of the IF_NOT_MAPPED
instruction. Two bits (Bit 16 and 17) are interpreted as follows:

Bit 16: 0 = no mapping was done
1 = mapping was successful

*Bit 17: 0 = mapped to a range
1 = mapped to a pattern

*Bit 17 is valid only if Bit 16 = 1

Bit 0 of RETURN_FLAGS is also used to inverse assemble
microprocessors with incomplete status. See appendix B for a
complete description of using Bit 0.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-22 Reference Manual

TASK All of HP’s current logic analyzers and emulators can inverse assemble
captured data. To avoid re-writing an inverse assembler for each
different instrument, Hewlett-Packard has defined an Inverse
Assembly Language that is compatible among all of the following
instruments at the source code level:

HP 64XXX Emulation
HP 64620 State Analysis
HP 1630A/D/G Logic Analyzer
HP 1631A/D Logic Analyzer
HP 1650A/B and HP 1651A/B Logic Analyzer
HP 16510A/B and HP 16511B Logic Analyzer

Inverse assembler source code written to work on one of the machines
listed above can be used in another machine, often with only minor
changes.

The TASK communication variable is used to identify what kind of
machine the inverse assembler is operating in. By using the TASK
variable to identify which machine is being used, it may be possible to
write a single inverse assembler that works properly in all of the above
machines.

TASK will have the following values, depending on which HP
instrument the inverse assembler is running in:

Value Environment

0
1
2
3
4
5

Emulation--display memory mnemonic
Emulation--display trace mnemonic
Emulation--display trace status mnemonic
HP 64620 State Analysis
HP 1630A/D and HP 1631A/D Logic Analyzers
HP 1630G, HP 1650A/B, HP 1651A/B, HP 16510A/B
and HP 16511B Logic Analyzers

For the HP 10391B IAL Development Package, TASK will always be 5
or greater.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-23

Table 3-1. Inverse Assembler Executable Instruction Set

Arithmetic/Logical Instructions

Instruction Operand Destination Description

ADD Memory/immediate Accumulator Accumulator + operand
SUBTRACT Memory/immediate Accumulator Accumulator - operand

DECREMENT Memory Memory Memory - 1
INCREMENT Memory Memory Memory + 1

AND Memory/immediate Accumulator Accumulator AND operand
EXCLUSIVE_OR Memory/immediate Accumulator Accumulator XOR operand
INCLUSIVE_OR Memory/immediate Accumulator Accumulator OR operand

ACCUMULATOR Instructions

Instruction Operand Description

LOAD Memory/immediate Copy Memory/immediate to
Accumulator.

STORE Memory Copy Accumulator to Memory.

EXTRACT_BIT Immediate Extract Bit # (0= LSB, 31= MSB)
and put in Accumulator.

ROTATE RIGHT/LEFT, Immediate Rotate Accumulator.

COMPLEMENT Ones complement Accumulator.

TWOS_COMPLEMENT Twos complement Accumulator.

Memory Instructions

Instruction Operand Destination Description

SET Memory,immediate Memory Memory = Immediate
 (-8 to + 7)

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-24 Reference Manual

Table 3-1. Inverse Assembler Executable Instruction Set (continued)

Conditional Instructions

Instruction Operand Description

CASE_OF Memory Branch to one of the following
statements, depending on the value
of Memory.

CASE_OF MSB,LSB Branch to one of the following
statements, depending on the value of
the bit range in the Accumulator.

CASE_END End of CASE statement.

Instruction Description

IF Memory rel Memory THEN result Test Memory vs. Memory.

IF Memory rel Immediate THEN result Test Memory vs. Immediate
value.

IF MSB,LSB rel Memory THEN result Test the value of the bit
range in the
Accumulator vs. Memory.

IF MSB,LSB rel Immediate THEN result Test the value of the bit
range in the
Accumulator vs. Immediate.

Where "rel" is

= equal
< > not equal
< = less than or equal
> = greater than or equal
< less than
> greater than

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-25

Table 3-1. Inverse Assembler Executable Instruction Set (continued)

Program Control Instructions

Instruction Operand Description

CALL Label Branch to Label, stack return address.

GOTO Label Branch to Label.

RETURN Return from CALL, or leave inverse
assembler.

ABORT Leave inverse assembler.

Output Display Buffer Instructions

Instruction Operand Description

OUTPUT String constant Write string constant to
output display buffer.

OUTPUT string Write string to output
display buffer.

OUTPUT ACCUMULATOR,FORMAT Write value of Accumulator
to output display buffer,
using the defined FORMAT.

POSITION ABS/REL,immediate Move in the output display
buffer to an absolute column
number or a column relative
to the current position.

DEFAULT_WIDTH immediate Defines the maximum width
of the Output Display Buffer

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-26 Reference Manual

Table 3-1. Inverse Assembler Executable Instruction Set (continued)

Output Display Buffer Instructions (continued)

Instruction Description

FETCH_POSITION Load Accumulator with the column
number where the last character was
printed.

NEW_LINE Generate a new line in the output display
 buffer for the current state.

IF_NOT_MAPPED THEN result OUTPUT the symbol in the ADDR
symbol for the contents of the
Accumulator. If no symbol is present,
execute the result instruction.

Miscellaneous Instructions

Instruction Operand Description

INPUT REL/ABS, Memory/Immediate [,QUALIFIED] Point to the desired state
in the acquisition memory
and initialize
communication variables.

TAG_WITH Memory/Immediate Tag the state in acquisition
memory for future
reference.

NOP No action.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-27

Table 3-2. Pseudo Instructions

Symbolic Operand Definition

Label Instruction Operand Description

LABEL ASCII/ASC string Defines string for
OUTPUT instructions.

LABEL CONSTANT/CONST immediate Defines a constant of the
name LABEL and assigns
the immediate value to it.

LABEL VARIABLE/VAR [immediate] Declares a variable of the
name LABEL and
initializes it to the
immediate value.

LABEL FORMAT a,b,c[,DISPLAY_BASE] Defines a format for the
OUTPUT instruction.

Note
Labels appearing on lines without instructions are assumed to be code
labels for use with the GOTO and CALL instructions. Labels for
ASCII, CONSTANT, VARIABLE, and FORMAT pseudo
instructions must be on the same line as the rest of the pseudo to be
accepted as the label for that pseudo.

Inverse Assembler Titles

Instruction Operand Description

LABEL_TITLE string Replaces the label DATA with a string.

BASE_TITLE string Replaces the base title Hex with a string.

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-28 Reference Manual

Table 3-2. Pseudo Instructions (continued)

Pseudo instructions used with the INPUT instruction

Instruction Operand Description

QUALIFY_VALUE immediate Defines the value in INPUT_STATUS to
search for.

QUALIFY_MASK immediate Defines which bits of QUALIFY_VALUE to
use or ignore.

SEARCH_LIMIT immediate Defines the maximum number of states searched
by the INPUT instruction. When the
SEARCH_LIMIT is reached, the INPUT
instruction stops with INPUT_ERROR
initialized to a non-zero value.

Debugging Aides

Instruction Operand Description

MAX_INSTRUCTION Immediate Limits number of
instructions executed.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-29

Table 3-3. Communication Variables

Variable Description

INITIAL_ADDRESS Contains the value of acquisition memory for the ADDR label
when the logic analyzer system software calls the inverse assembler
to decode a state.

INITIAL_DATA Contains the value of acquisition memory for the DATA label
when the logic analyzer system software calls the inverse assembler
to decode a state.

INPUT_ADDRESS Contains the value of acquisition memory for the ADDR label for a
specific state. INPUT_ADDRESS is initialized in two cases:

1. When the logic analyzer system software calls the inverse
assembler to decode a state, or

2. When the INPUT instruction is executed. In this case,
INPUT_ADDRESS contains the value in the ADDR label for
the state pointed to by the INPUT instruction.

INPUT_DATA Contains the value of acquisition memory for the DATA label for a
specific state. INPUT_DATA is initialized in the same cases as
INPUT_ADDRESS.

INPUT_STATUS Contains the value of acquisition memory for the STAT label for a
specific state. INPUT_STATUS is initialized in the same cases as
INPUT_ADDRESS.

INPUT_ADDR_B Contains the value of acquisition memory for the ADDR_B label for
a specific state. INPUT_ADDR_B is initialized in the same cases as
INPUT_ADDRESS.

INPUT_DATA_B Contains the value of acquisition memory for the DATA_B label for
a specific state. INPUT_DATA_B is initialized in the same cases as
INPUT_ADDRESS.

INPUT_TAG Contains the value of the tag for this state. Tags can be written by
the inverse assembler to mark a state for future reference. They are
also used when decoding a microprocessor that generates
insufficient status (See appendix B).

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-30 Reference Manual

Table 3-3. Communication Variables (continued)

Variable Description

INPUT_ERROR Set to zero if the communication variables were successfully
initialized. Set to non-zero if the initialization failed.

QUALIFY_VALUE Defines the pattern in the STAT label that must be present during
an INPUT REL/ABS,QUALIFIED instruction.

QUALIFY_MASK Defines which bits of QUALIFY_VALUE are used in a qualified
INPUT search.

SEARCH_LIMIT Limits the number of states searched by the INPUT instruction.

RETURN_FLAGS Indicate the results of an IF_NOT_MAPPED instruction. Also
used when disassembling microprocessors with incomplete status.

INITIAL_FLAGS Used when disassembling microprocessors with incomplete status.

INITIAL_OPTIONS Used when disassembling microprocessors with incomplete status.

TASK Identifies which HP machine the inverse assembler is executing in.

HP 10391B IAL Development Package Writing Inverse Assembler Code
Reference Manual 3-31

Writing Inverse Assembler Code HP 10391B IAL Development Package
3-32 Reference Manual

4
Inverse Assembler Instruction Set

Introduction This final chapter defines the syntax, explains the function of each
executable and pseudo instruction, and illustrates how the instructions
are used with one or more examples. For quick reference, the
instructions are arranged alphabetically.

Choosing a
Text Editor

The inverse assembler source code can be written using any text editor
on your PC that can output the file in printable U.S. ASCII characters.
Source code that contains non-printable, U.S. ASCII characters may
not assemble properly.

Many text editors add non-printable U.S. ASCII characters to files to
represent text enhancements, such as underlining or italics. These
editors may also include special instructions to allow a file to be stored
as a U.S. ASCII file only. These instructions are included to allow a
text file to be used by other PC programs.

If the manual for your text editor is unclear about the characters stored
in files, the following test may be useful:

1. Write a few paragraphs of text using your text editor. Do not
include text enhancements, such as underlining or italics.

2. Store the text to disk. Use the special storage instructions for
storing ASCII text, or the editor instructions that allow a file to
be used by another PC program.

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-1

3. Exit the text editor. At the DOS prompt, type:

type < filename>

where < filename> is the name of the file you stored from your
text editor.

4. When you select the "Enter" key after typing the above command,
DOS will copy your file to the PC screen. If the screen shows
characters you did not type into the file, your text editor is storing
non-printable ASCII characters and cannot be used with the IAL
assembler. If the screen looks exactly like the text you entered in
your editor, this file can probably be used with the IAL assembler.

(Non-printable U.S. ASCII characters include special national
characters and characters outside the code range of 32 through 127.)

Entering
Inverse
Assembler
Source Code

The following syntax rules must be followed to allow IAL source code
to be properly assembled by the assembler.

The First Line The first line of inverse assembler source code MUST be the following:

"IAL"

This string MUST begin in the first column of the line and should be
the only text on that line. "IAL" tells the assembler what kind of source
code follows.

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-2 Reference Manual

Line Format Rules Each line is divided into four fields:

1. The Label Field
2. The Operation Field
3. The Operand Field
4. The Comment Field

a. Field sequence cannot be changed. The correct order of field
sequence is:

Label Operation Operand Comment

NEW_ADDR VAR 0 ;Defines the variable NEW_ADDR
;and initializes it to 0

Note
It is recommended that each field in the source statement start at a
fixed position (column) in the line. Presenting each line in a fixed
format improves readability.

b. One or more spaces MUST separate the fields in a line.

c. A label field, if used, MUST begin in column one.

d. The operation and operand fields MUST not begin in column
one. Column one is reserved for the start of the label field or for
the delimiter of the comment field.

Additional rules and conventions governing the fields in a line are given
in the following paragraphs.

Length of Lines Lines may contain up to 110 characters (including spaces) and are
terminated by a carriage return < CR> . A line containing more than
110 characters will be truncated to 110 characters.

Blank lines are ignored by the assembler and can be used to improve
the readability of the source code.

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-3

Label Field The label field is used for the following:

1. To declare variables (VAR).
2. To define constants (CONST) or string constants (ASCII).
3. To define formats (FORMAT) for the OUTPUT instructions.
4. To define the destination of GOTO or CALL instructions.

The label field is required in the ASCII, VAR, CONST, and FORMAT
pseudo instructions. It is optional for all other instructions and pseudo
instructions. A line with only a label is a valid line.

Every label MUST be unique. The instructions, pseudo instructions,
and communication variables listed in Tables 3-1, 3-2, and 3-3 are
reserved words and cannot be used for label names.

The label field starts in column one of the line and MUST be
terminated by a space or a colon (:).

A label can consist of the letters A through Z (upper and lower case),
the numeric digits 0 through 9, and the underline symbol (_). The label
may contain any number of characters, as long as the first character is a
letter.

Valid Labels:

ab_cd
AB_CD
A5rHi

Invalid Labels:

ab.cd?
$BCDEF
4UVWXY

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-4 Reference Manual

If more than 15 characters are entered in the label field, the assembler
will print all characters in the output listing; however, it will only use
the first 15 characters for label identification. The assembler will
recognize:

STATEMENT_LABEL1

and

STATEMENT_LABEL2

as identical labels and will issue a "DUPLICATE SYMBOL" error
message. The assembler does check the case of characters in a label.
It will treat:

Name

and

name

as two separate labels.

Operation Field The operation field contains an IAL instruction or pseudo instruction.
The operation field follows the optional label field and is separated
from it by at least one space, a tab, or a colon (:). If there is no label,
the instruction may begin in any column position after column one.

An instruction in the operation field MUST be all upper-case letters,
exactly as listed in the "Language Reference" section of this manual.

An operation field that requires an operand is terminated by one or
more spaces or by a tab. If no operand is required, the operation field
can also be terminated by a carriage return, or by a semicolon (;).
Termination of this type of operation field indicates the start of the
comment field.

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-5

Operand Field The operand field specifies values or variables required by the IAL
instruction. The operand field, if present, follows the operation field
and MUST be separated from it by at least one space or tab. The
following table shows the different types of operands that may be
expected by an IAL instruction:

Operand Description

memory Name of a variable defined using the VAR instruction.

immediate An immediate numeric value, or the name of a constant defined using
the CONST declaration.

string An ASCII string, enclosed in quotation marks (").

LABEL The line label to branch to in a CALL or GOTO instruction.

 MSB,LSB A subrange of the ACCUMULATOR used in IF and CASE
instructions. MSB specifies the most significant bit of the
ACCUMULATOR to be used in the test; LSB specifies the least
significant bit.

result The IAL instruction to be executed if an IF or an IF_NOT_MAPPED
instruction tests true.

Comment Field The optional comment field may contain any information that you feel
is necessary to identify portions of the program. The delimiter for the
comment field is the semicolon (;), a tab, or a space following the
operand field. A semicolon in any column of the line will start the
comment field (except when used in an ASCII string).

In addition, an asterisk (*) in column one of a line indicates that the
entire line is a comment.

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-6 Reference Manual

Delimiters Certain characters are used to indicate the end of fields or labels, and
the beginning of others. These characters, referred to as delimiters,
should not be used as ordinary characters. For example, a space
cannot be used as part of a label name. A list of delimiters is shown in
the following table:

Delimiter Use

Space Separates fields or operands; ends a label

Tab Separates fields; ends a label

Semicolon (;) Indicates the start of a comment field

Asterisk (*) When used in column one, indicates the start of a comment field.

Colon (:) Indicates the end of a label field

Apostrophes (’..’) Indicates a character string

Quotation Marks ("..") Indicates a character string

Carets (^ ..^) Indicates a character string

Numeric Terms A numeric term may be binary, octal, decimal, or hexadecimal. A
binary term MUST have the suffix "B" (for example: 101101B). Octal
values MUST have either an "O" or a "Q" suffix (for example: 26O,
26Q). A hexadecimal term MUST have the suffix "H" (for example:
0BBH, 2CDH, 36H). When no suffix is assigned, the decimal value is
always assumed.

Note
You must start a hexadecimal term with a decimal digit. The assembler
will identify a term that starts with an alphabetic character as a label or
an expression.

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-7

String Constants String constants are defined by the ASC or ASCII pseudo instruction
to be used by the OUTPUT instruction. String constants are enclosed
by apostrophes (’..’), quotation marks (".."), or carets (^ ..^).

String constants do not have a numerical value and cannot be operated
on by IF or CASE statements.

Language
Reference

The following pages list the executable and pseudo instructions for
Hewlett-Packard’s Inverse Assembler Language. For quick reference,
these instructions are arranged alphabetically.

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-8 Reference Manual

ABORT Leave Inverse Assembler

SYNTAX

Label Operation Operand Comment

ABORT

The ABORT instruction will pass control back to the logic analyzer
system software even if the program is currently in a subroutine.

Example:

ABORT ;Return to
;System Software.

ABORT

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-9

ADD Add to Accumulator

SYNTAX

Label Operation Operand Comment

ADD memory/immediate

The contents of the operand field are added to the value in the
accumulator. The operand can be either a memory reference or an
immediate value. The value of immediate data can range from 0 to
0FFFFFFFFH (32 bit value).

Example:

ADD 1 ;Increment
;accumulator.

ADD NAME ;Add variable to
;accumulator.

ADD

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-10 Reference Manual

AND Logical AND with Accumulator

SYNTAX

Label Operation Operand Comment

AND memory/immediate

This instruction performs a logical "AND" of the value of the operand
and the value in the accumulator. The operand can be either a memory
reference or an immediate value. The value of immediate data can
range from 0 to 0FFFFFFFFH (32 bit value).

Examples:

AND 1 ;AND lower bit.

AND MASK ;AND with MASK
;variable.

AND

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-11

Pseudo ASCII/ASC Define ASCII String

SYNTAX

Label Operation Operand Comment

LABEL ASCII/ASC string

The ASCII pseudo instruction is used to define an ASCII string to be
used with an OUTPUT instruction. This is recommended for strings
that are used more than once to minimize the size of the inverse
assembler.

Examples:

LOAD_STG ASCII "LOAD" ;Define text for
;OUTPUT instruction.

STORE_STG ASC "STORE"

Pseudo ASCII/ASC

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-12 Reference Manual

Pseudo BASE_TITLE Define BASE Title

SYNTAX

Label Operation Operand Comment

BASE_TITLE string

The BASE_TITLE pseudo instruction is used to place text in the
BASE portion of the inverse assembler field. The string defined in
BASE_TITLE will replace the default "Hex."

Examples:

BASE_TITLE "Mnemonic" ;Places the text Mnemonic
;in the base of the
;inverse assembler field.

Note
The BASE_TITLE text does not effect the way data is processed by
the logic analyzer.

Pseudo BASE_TITLE

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-13

CALL Transfer Program Control to Label

SYNTAX

Label Operation Operand Comment

CALL LABEL

The CALL instruction transfers program control to the label specified.
A RETURN instruction will transfer control to the statement following
the CALL. The maximum subroutine nest level is 16.

Example:

CALL SUBROUTIN ;Control is
;transferred to
;SUBROUTIN.

CALL

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-14 Reference Manual

CASE_OF Conditional Testing of Variable or Accumulator

SYNTAX

Label Operation Operand Comment

CASE_OF memory/MSB,LSB

The CASE_OF instruction allows conditional testing of either a user
variable or the accumulator. Program control will branch to one of the
instructions following the case depending on the value of the variable
or accumulator. If the operand is a memory reference, then the value
of the memory location becomes an index added to the current
program counter to fetch the next instruction. Otherwise, the bit range
specified is the index.

CASE_OF rules:

1. The CASE_OF statement must be followed by a CASE_END
statement.

2. If the value of the operand falls into the range of the CASE, the
corresponding instruction will be executed. Otherwise, the
statement following CASE_END will be executed.

3. Any instruction may occur in the CASE except:

a. IF,

b. IF_NOT_MAPPED, or

c. another CASE.

CASE_OF

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-15

4. If a CALL is executed, the return from the subroutine will
execute the instruction following the CASE_END.

5. GOTO and RETURN instructions are unconditional branches
out of the CASE.

Example 1:

CASE_OF NAME ;Test memory NAME.
 OUTPUT "LDA" ;Execute this if NAME = 0.
 CALL SUB ;Execute this if NAME = 1.
CASE_END
< next instruction> ;Execute next instruction

;if NAME < > 0,1. Execution
;will also take place
;after either statement
;in the body of CASE
;is executed.

Example 2:

CASE_OF 28,27 ;Decode add/subtract group.
 OUTPUT "addu" ;Execute if accumulator

;bit 28,27 = 0
 OUTPUT "subu" ;Execute if accumulator

;bit 28,27 = 1
 OUTPUT "adds" ;Execute if accumulator

;bit 28,27 = 2
 OUTPUT "subs" ;Execute if accumulator

;bit 28,27 = 3
CASE_END

CASE_OF

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-16 Reference Manual

COMPLEMENT One’s Complement on Accumulator

SYNTAX

Label Operation Operand Comment

COMPLEMENT

A one’s complement is performed on the contents of the accumulator.
Bits that are 1 change to 0 and those that are 0 change to 1.

Example:

COMPLEMENT ;One’s complement
;on accumulator.

COMPLEMENT

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-17

CONSTANT/ CONST
Pseudo

Define Constant

SYNTAX

Label Operation Operand Comment

NAME CONST constant

This instruction allows commonly used constants to be defined and
referenced by the label specified. Normally, immediate constants are
handled automatically by the assembler, but the assembler will not
optimize the use of constants that are identical. To avoid wasting data
space, commonly used constants can be defined and referenced by
symbolic names. All constants are 32-bit quantities.

Example:

ML24 CONST 0FFFFFFH ;Mask lower 24-bit
;constant.

CONSTANT/ CONST Pseudo

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-18 Reference Manual

DECREMENT Decrement Memory Location

SYNTAX

Label Operation Operand Comment

DECREMENT memory

This instruction decrements the memory location specified by the
operand by one. The operand must be defined using the VARIABLE
pseudo instruction.

Example:

DECREMENT SAM ;Decrement the
;variable SAM.

DECREMENT

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-19

Pseudo
DEFAULT_WIDTH

Default width of display field

SYNTAX

Label Operation Operand Comment

DEFAULT_WIDTH immediate

This instruction defines the maximum DEFAULT_WIDTH of the
display field. Operands can range from 1 to 64. The logic analyzer can
display a maximum of 59 characters. When a DEFAULT_WIDTH
larger than 59 is specified, the extra characters can be scrolled onto the
screen.

If no default width is specified, the default width is 32.

Example:

DEFAULT_WIDTH 40 ;The default
;width is 40.

Pseudo DEFAULT_WIDTH

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-20 Reference Manual

EXCLUSIVE_OR Exclusive OR with Accumulator

SYNTAX

Label Operation Operand Comment

EXCLUSIVE_OR memory/immediate

This instruction performs a logical "EXCLUSIVE OR" of the operand
value and the accumulator value. The operand can be either a memory
reference or an immediate value. The value of immediate data can
range from 0 to 0FFFFFFFFH (32-bit value).

Example:

EXCLUSIVE_OR 1 ;Toggle lower bit

EXCLUSIVE_OR MASK ;OR variable MASK.

EXCLUSIVE_OR

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-21

EXTRACT_BIT Extract from Accumulator

SYNTAX

Label Operation Operand Comment

EXTRACT_BIT immediate

The operand for this instruction is a bit number in the accumulator
with a range from 0 to 31. This bit will be extracted and the value of the
accumulator set to its value (either 0 or 1).

Example:

EXTRACT_BIT 10 ;Set accumulator
;to value of bit
;10 in accumulator.

EXTRACT_BIT

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-22 Reference Manual

FETCH_POSITION Determine Current Position in the Output Buffer

SYNTAX

Label Operation Operand Comment

FETCH_POSITION

The FETCH_POSITION instruction sets the accumulator to the
column number of the display output buffer where the next OUTPUT
instruction will write characters. The instruction is particularly useful
in determining whether or not an output string will fit on the current
output line.

FETCH_POSITION

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-23

Example:

OUTPUT STRING1 ;output a string

FETCH_POSITION ;determine next column
;number to write

;
;the accumulator now contains the next column
;number. If the second string to be output is 25
;characters, adding 25-1 to the accumulator will
;give the column number of the last character
;in STRING2
;

ADD 24 ;calculate column number of last

;
;Now see if the last column number to be used is
;greater than the maximum line length. If it is,
;issue a NEW_LINE instruction, then output the
;second string.
;

IF 31,0> 64 THEN NEW_LINE ;start a new line if > 64

OUTPUT STRING2 ;output the second string

FETCH_POSITION

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-24 Reference Manual

Pseudo FORMAT Format Accumulator

SYNTAX

Label Operation Operand Comment

NAME FORMAT a,b,c [,DISPLAY_BASE]

FORMAT is used to define how the accumulator should be converted
when used in conjunction with the OUTPUT instruction. The
operands are defined as follows:

Operand Description

 a Defines how many bits of the accumulator will be converted. It can
range from 1 to 32; if a subrange is specified, then the most significant
bits will be ANDed with 0.

 b Specifies the base of the conversion. It can be BIN, OCT, DEC, or
HEX

 c Specifies the number of characters to be displayed by the OUTPUT
instruction. Leading zeros will be supplied if the number is smaller
than the converted field. If c= LEFT_JUSTIFIED, a zero suppressed
number will be generated, displaying as many digits as necessary.

DISPLAY_BASE This optional operand can be used to append a B, O, D, or H on the
end of the constant converted, depending on the numeric base of the
number.

Pseudo FORMAT

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-25

All operands in the accumulator can be displayed as one ASCII
character by using the keyword ASCII instead of the number-of-bits
operand.

Examples:

HEX_FMT FORMAT 16,HEX,4,DISPLAY_BASE ;Four digit
;hex format.

REG_FMT FORMAT 3,DEC,LEFT_JUSTIFIED ;Left-justified
;decimal.

ASC_FMT FORMAT ASCII ;ASCII format.

Pseudo FORMAT

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-26 Reference Manual

GOTO Transfer Program Control

SYNTAX

Label Operation Operand Comment

GOTO LABEL

The GOTO instruction transfers program control to the label specified.

Example:

GOTO OPCODE_STATUS ;Branch to
;status routine.

GOTO

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-27

IF Compare Operands

SYNTAX

Label Operation Operand Comment

IF memory rel memory/
immediate THEN result

or

IF MSB,LSB rel memory/
immediate THEN result

Where rel is

= equal
< > not equal
< = less or equal
> = greater or equal
< less than
> greater than

IF

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-28 Reference Manual

The IF instruction allows operands to be compared and decisions
made based on the results of the comparison. The first form of the IF
instruction allows memory to be compared to other memory locations
or to immediate data. Immediate data can range from 0 to
0FFFFFFFFH (32 bits). The operand to the THEN part can be any
instruction except another IF, a CASE, or IF_NOT_MAPPED.

The second form of the IF instruction allows a bit range of the
accumulator to be tested. Here the first operand specifies the most
significant bit (MSB) and the second operand specifies the least
significant bit (LSB). This allows all or part of the accumulator to be
tested against an immediate value or memory.

Examples:

IF NAME < 101 THEN GOTO LABEL ;Test value of
;NAME

IF 6,3 = 1001B THEN CALL SUBROUTIN ;Test accumulator
;bit range 6-3
;inclusive.

IF

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-29

IF_NOT_MAPPED Check for Symbol in ADDR Symbol Table

SYNTAX

Label Operation Operand Comment

IF_NOT_MAPPED THEN result

The IF_NOT_MAPPED instruction is used to put symbols from the
ADDR symbol table into the inverse assembled listing. A listing that
uses the ADDR symbol table may be easier to interpret because the
logic analyzer’s display will more closely resemble the original
microprocessor source code.

The most common usage of the IF_NOT_MAPPED instruction is:

IF_NOT_MAPPED THEN OUTPUT ACCUMULATOR,FORMAT

When the IF_NOT_MAPPED instruction is executed, the contents of
the ACCUMULATOR are compared to the ADDR symbol table.
Three conditions are possible:

1. If the address in the ACCUMULATOR matches a symbol
defined as a pattern, i.e., not included in a range, the symbol
associated with the address is displayed. The "result" part of the
instruction, in this case the "OUTPUT" instruction, is not
executed. This means the value passed corresponds exactly with
a particular symbol.

Example:

JMP PORT_ADDRESS

IF_NOT_MAPPED

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-30 Reference Manual

2. If the address is not found as a single valued address, but is part
of a range, the symbol associated with the range will be displayed.
The ACCUMULATOR will be set to the offset from the
beginning of the range. The "result" part of the instruction will be
executed to display this offset.

Example:

JMP SUBROUTIN+ 023H

3. If the address in the ACCUMULATOR is not found as a single
valued address or as part of a range, i.e., not in the symbol table,
no symbolic information will be displayed. Here, the value in the
accumulator will contain the absolute address and will be
displayed using the "result" part of the function.

Example:

JMP 0FFFFH

The RETURN_FLAGS variable has two flags in the upper 16
bits. These flags indicate the result of the IF_NOT_MAPPED
instruction. They are interpreted as follows:

Bit 16: 0 = no mapping was done
1 = mapping was successful

*Bit 17: 0 = mapped to a range
1 = mapped to a single value symbol

* Bit 17 is valid only if bit 16 = 1.

IF_NOT_MAPPED

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-31

INCLUSIVE_OR Logical OR with Accumulator

SYNTAX

Label Operation Operand Comment

INCLUSIVE_OR memory/immediate

This instruction performs a "logical or" of the operand value and the
accumulator value. The operand can be either a memory reference or
an immediate value. The value of immediate data can range from 0 to
0FFFFFFFFH (32-bit value).

Example:

INCLUSIVE_OR 1 ;Set bit 1.

INCLUSIVE_OR MASK ;OR with MASK.

INCLUSIVE_OR

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-32 Reference Manual

INCREMENT Increment Memory Location

SYNTAX

Label Operation Operand Comment

INCREMENT memory

This instruction increments the memory location specified by the
operand by one. The operand must be defined by the VARIABLE
pseudo.

Example:

INCREMENT NAME ;Increment
;variable NAME.

INCREMENT

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-33

INPUT Input Data

SYNTAX

Label Operation Operand Comment

INPUT ABS/REL,memory/immediate
 [,QUALIFIED]

The INPUT instruction to allows an inverse assembler to read
information from any state in the acquisition memory. This may be
necessary in order to completely decode a multibyte instruction, or to
display the results of an executed instruction.

The INPUT instruction is used to "point" to the desired state. When
that state is located in the acquisition memory, the following
communication variables get initialized with the contents of that state:

INPUT_ADDRESS Contains the value of acquisition memory in the ADDR column of
the state being pointed to.

INPUT_DATA Contains the value of acquisition memory in the DATA column of
the state being pointed to.

INPUT_ADDR_B Contains the value of acquisition memory in the ADDR_B column of
the state being pointed to.

INPUT_DATA_B Contains the value of acquisition memory in the DATA_B column of
the state being pointed to.

INPUT_STATUS Contains the value of acquisition memory in the STAT column of the
state being pointed to.

INPUT_ERROR Set to zero if the specified state was found and the communication
variables were successfully initialized. Set to non-zero if the state
was not found or if the variable could not be initialized.

INPUT

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-34 Reference Manual

INPUT_TAG Contains the value of the tag for this state. Tags can be written by
the inverse assembler to mark a state for future reference. They are
also used when decoding a microprocessor that generates
insufficient status (see appendix B).

INPUT can point relative to the current state being processed by the
inverse assembler, or the acquisition memory can be searched to find a
state containing a specific value in the ADDR column.

If the QUALIFIED option is specified, the INPUT instruction will also
look for a specific pattern in the STAT column. This qualifier is set by
the values in the QUALIFY_VALUE and QUALIFY_MASK pseudo
instructions.

INPUT REL,operand:

This option points to a state before or after the current state being
processed by the inverse assembler. The operand indicates how far
from the current state to point and which direction (before or after the
current state). If the operand is a positive number, the INPUT
instruction is pointing to a state after the current state. A negative
operand points to a state before the current state.

Note
INPUT REL, operand does not change the current state.

If the inverse assembler is currently decoding line 1 on the logic
analyzer display, the statement

INPUT REL,2

would cause the inverse assembler to skip over line 2 on the display and
point to the acquired data in line 3.

INPUT

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-35

The operand can be either an immediate value or a user-defined
variable. To read data after the current line, use a user-defined
variable or an immediate value that is positive. To read data before the
current line, use an immediate value that is negative.

INPUT ABS, operand:

This option will search forward through the acquisition memory to find
a state with a specific value in the ADDR column, and will point to the
acquired data in the line containing that address.

The operand specifies the absolute address. The operand must be a
user-defined variable or a communications variable (see table 3-3 in
chapter 3).

The SEARCH_LIMIT variable limits the number of states to be
searched by the INPUT routine. If QUALIFIED is specified, then the
search count applies to the number of states that are satisfied by the
status qualification check.

Examples:

INPUT ABS,DATA_ADDRESS,QUALIFIED ;Qualified on
;status.

INPUT ABS,DATA_ADDRESS ;Not qualified.

INPUT REL,2 ;Point two states
;ahead.

INPUT REL,COUNT ;Relative with
;count.

INPUT

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-36 Reference Manual

Pseudo
LABEL_TITLE

Define Inverse Assembler Title

SYNTAX

Label Operation Operand Comment

LABEL_TITLE string

The LABEL_TITLE pseudo instruction is used to define the title of
the inverse assembler field. The string defined in LABEL_TITLE will
replace the default "DATA."

Examples:

LABEL_TITLE ^ 8085 Mnemonic^

Pseudo LABEL_TITLE

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-37

LOAD Load Accumulator

SYNTAX

Label Operation Operand Comment

LOAD memory/immediate

This instruction loads the accumulator with the value specified by the
operand field. The operand can be either a memory reference or an
immediate value. The value of immediate data can range from 0 to
0FFFFFFFFH (32-bit value).

Examples:

LOAD 1 ;Set accumulator
;to 1.

LOAD SAM ;Load value of SAM.

LOAD

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-38 Reference Manual

MAX_INSTRUCTION
Pseudo

Limit Number of Instructions Executed

SYNTAX

Label Operation Operand Comment

MAX_INSTRUCTION immediate

Since the programmer has the ability to control program flow, it is
possible to program an infinite loop that will never return to the calling
program. To avoid this problem, a maximum number of instructions
variable is used to limit the number of instructions that can be executed
each time the inverse assembler is called. This number is initialized to
a large number and should never interfere with the inverse assembler.
However, this number can be used to set a low limit on the instruction
limit to see which calls to the inverse assembler take the most time.
This can be used to optimize sections or stop near-infinite loops. The
value of MAX_INSTRUCTION, initialized by this pseudo, cannot be
changed during the inverse assembly. If the instruction count exceeds
this value, the inverse assembler is aborted. In addition, an instruction
overflow message is placed in the output buffer and displayed.

The default value for MAX_INSTRUCTION is 10000.

MAX_INSTRUCTION Pseudo

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-39

Example:

MAX_INSTRUCTION 50 ;Check for execution
;of more than 50
;instructions.

MAX_INSTRUCTION 10000 ;This sets a large
;limit so only infinite
;loops will abort the IAL.

MAX_INSTRUCTION Pseudo

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-40 Reference Manual

NEW_LINE Begin Generating a New Output Line

SYNTAX

Label Operation Operand Comment

NEW_LINE

The NEW_LINE instruction is used when more than one line of
information is to be output by the inverse assembler for a single
captured analysis state. Following the execution of the NEW_LINE
instruction, subsequent OUTPUT and POSITION instructions refer to
the new line of inverse assembler output. The NEW_LINE instruction
can be used to generate up to four inverse assembler output lines.
Exceeding this limit will cause the inverse assembler to abort.

Example:

OUTPUT "This is line 1"
NEW_LINE
OUTPUT "****This is line 2"

This series of instructions will produce the output shown below:

This is line 1
****This is line 2

NEW_LINE

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-41

NOP No Operation

SYNTAX

Label Operation Operand Comment

NOP

The NOP instruction has no effect on the execution of the inverse
assembler. The instruction following NOP will be executed next.

Example:

CASE_OF 0,0

 OUTPUT "F"

 NOP

CASE_END

NOP

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-42 Reference Manual

OUTPUT Output to Output Buffer

SYNTAX

Label Operation Operand Comment

OUTPUT string/ACCUMULATOR
,FORMAT

The OUTPUT instruction expects an operand defined by the ASCII
pseudo, an immediate string, or the key word ACCUMULATOR
followed by a conversion format defined by the FORMAT pseudo.
The first two operands will copy ASCII text to the output buffer. The
third operand will convert the accumulator using the specified format
to a number in the output buffer.

Example:

LOAD_STG ASCII "LOAD"

OUTPUT LOAD_STG ;Output LOAD
;text.

OUTPUT "LOAD" ;Output immediate
;text.

OUTPUT ACCUMULATOR,HEX_FMT ;Convert
;accumulator
;to hex.

OUTPUT

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-43

POSITION Position Column Pointer

SYNTAX

Label Operation Operand Comment

POSITION ABS/REL,column number

The POSITION instruction allows the current column pointer to be
moved to an absolute or relative position in the output buffer. The
column number can range from 1 to 64 for absolute positioning or -32
to 31 for relative positioning. In the relative mode, negative numbers
move the column position to the left of the current location and
positive numbers move it to the right.

Example:

POSITION ABS,10 ;Move to column
;10.

POSITION REL,-2 ;Move to the left
;2 columns.

POSITION

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-44 Reference Manual

QUALIFY_MASK &
QUALIFY_VALUE
Pseudos

Set Qualify Specifications

SYNTAX

Label Operation Operand Comment

QUALIFY_MASK immediate

or

QUALIFY_VALUE immediate

QUALIFY_MASK and QUALIFY_VALUE are used to set qualify
specifications for the INPUT instruction. When INPUT
ABS,operand,QUALIFIED or INPUT REL,operand,QUALIFIED is
executed, both the address and status must be satisfied before data is
returned. The mask operand is considered to be a 32-bit mask where a
0 represents a "don’t care" state and a 1 represents a "care" state. The
status in the analysis buffer is first masked (ANDed) with the value of
QUALIFIED_MASK to obtain the value of "care" bits. Then this
value is compared to QUALIFY_VALUE to see if the status is
satisfied.

Note
QUALIFY_MASK and QUALIFY_VALUE are also the names of
communication variables and should be treated as communication
variables if the mask or the value needs to vary dynamically. Use the
psuedo-ops if qualify specifications are constants that do not vary.

QUALIFY_MASK & QUALIFY_VALUE Pseudos

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-45

Examples:

QUALIFY_MASK 00101B ;Only care about
;bits 0 and 2

QUALIFY_VALUE 00001B ;Value must
;be 001B.

QUALIFY_MASK & QUALIFY_VALUE Pseudos

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-46 Reference Manual

RETURN Return

SYNTAX

Label Operation Operand Comment

RETURN

The RETURN instruction can be used to return to the instruction
following a CALL or to leave the inverse assembler if a RETURN is
executed without any subroutine nesting.

Example:

RETURN ;Return to calling routine
;or leave inverse assembler
;if not in a subroutine.

RETURN

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-47

ROTATE Rotate Accumulator Contents

SYNTAX

Label Operation Operand Comment

ROTATE RIGHT,immediate
or
LEFT,immediate

This instruction rotates the accumulator contents either right or left the
number of bits specified. The operand can range from 1 to 32. Bits
that are shifted off the left side (on left shifts) are rotated back on the
right side, and vice versa (circular shift).

Examples:

ROTATE LEFT,10 ;Shift left 10
;bits and rotate
;in on right.

ROTATE RIGHT,20 ;Shift right 20
;bits and rotate
;in on left.

ROTATE

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-48 Reference Manual

SEARCH_LIMIT
Pseudo

Limit Analysis Search

SYNTAX

Operation Operand Comment

SEARCH_LIMIT immediate

The SEARCH_LIMIT instruction applies to the INPUT instruction
and to reading data from the analysis buffer after a trace. The operand
specifies how many analysis states should be searched in order to find
the required data. The limit optimizes processing by not allowing the
entire buffer to be searched each time.

The search limit should be set to the maximum number of memory or
I/O references made between opcode fetches. For example, if the
inverse assembler was searching for a memory read state and that state
was not captured by the analysis hardware, SEARCH_LIMIT would
be used to limit the number of states scanned. The variables
QUALIFY_MASK and QUALIFY_VALUE may be used to qualify
the search. Every time the condition is satisfied, the search count is
incremented. QUALIFY_MASK and QUALIFY_VALUE can be
changed to search for other conditions and SEARCH_LIMIT can be
defined to reflect the number of states that are expected to be found.

The default for SEARCH_LIMIT is 16.

Examples:

SEARCH_LIMIT 7 ;Search limited to 7
;analysis states.

SEARCH_LIMIT Pseudo

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-49

SET Set Memory

SYNTAX

Label Operation Operand Comment

SET memory,immediate

The memory location specified is set to the value in the immediate
operand. The operand can range from -8 to + 7.

Example:

SET NAME,2 ;Set value of
;NAME to 2.

SET

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-50 Reference Manual

STORE Store Value in Accumulator

SYNTAX

Label Operation Operand Comment

STORE memory

This instruction stores the value in the accumulator in the location
defined by the operand. The operand label must be defined by the
VAR pseudo, or be one of the communication variables (see table 3-3
in chapter 3).

Example:

STORE NAME ;Store accumulator value
;in variable NAME.

STORE

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-51

SUBTRACT Subtract from Accumulator

SYNTAX

Label Operation Operand Comment

SUBTRACT memory/immediate

The value specified by the operand is subtracted from the value in the
accumulator. The operand can be either a memory reference or an
immediate value. The value of immediate data can range from 0 to
0FFFFFFFFH (32-bit value). Negative numbers are expressed in two’s
complement form.

Example:

SUBTRACT 1 ;Decrement
;accumulator.

SUBTRACT NAME ;Subtract value of
;NAME from
;accumulator.

SUBTRACT

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-52 Reference Manual

TAG_WITH Tag Analysis States

SYNTAX

Label Operation Operand Comment

TAG_WITH memory/immediate

The TAG_WITH instruction provides a convenient method to "mark" a
state. This mark can then be used during subsequent inverse assembly
calls.

TAG_WITH is used most often when disassembling a multibyte
instruction. When the first state of a multibyte instruction is
disassembled, the inverse assembler will look ahead with the INPUT
instruction to get all of the bytes of the instruction. The TAG_WITH
instruction can be used to mark the bytes as "already decoded." When
this "tagged" line is disassembled later, the inverse assembler can
display only the status of the line, instead of attempting to decode it.

The tag operand is the value of the tag to be associated with this
"tagged" state. The operand may be an immediate value, or a
user-defined variable. The tag has a 16-bit value; the non-tagged value
is zero. When the INPUT instruction is executed, the variable
INPUT_TAG will be initialized with the tag value of that state. For
more details on using TAG_WITH, refer to appendix B.

Example:

TAG_WITH TAG_VALUE ;Tag current
;analysis state.

TAG_WITH

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-53

TWOS_COMPLEMENT Two’s Complement on Accumulator

SYNTAX

Label Operation Comment

TWOS_COMPLEMENT

A two’s complement is performed on the accumulator, changing all 1
bits to 0 and 0 bits to 1, then adding 1 to the result.

Example:

TWOS_COMPLEMENT ;Negate accumulator.

TWOS_COMPLEMENT

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-54 Reference Manual

Pseudo
VARIABLE/VAR

Initialize and Reserve Memory

SYNTAX

Label Operation Operand Comment

NAME VARIABLE immediate

The VARIABLE instruction defines a storage location that can be
used on arithmetic and conditional statements. It can be initialized to a
specific value with the optional operand field.

Example:

NAME VARIABLE 0FFH ;Define variable
;storage and assign
;an initial value
;of 0FFH.

Pseudo VARIABLE/VAR

HP 10391B IAL Development Package Inverse Assembler Instruction Set
Reference Manual 4-55

Pseudo VARIABLE/VAR

Inverse Assembler Instruction Set HP 10391B IAL Development Package
4-56 Reference Manual

A
8085
Inverse Assembler

ÎAL̂

**

*

* INVERSE ASSEMBLER FOR THE 8085 MICROPROCESSOR

*

* This source code can be used with the HP 64620S, HP 1630A/D/G
* HP 1631A/D, HP 1650A, HP 1651A, or HP 16510A logic analyzers.

*

* INPUT_STATUS consists of the following 8085 signals:

* _
* BIT 3 IO/M
* BIT 2 HLDA
* BIT 1 S1
* BIT 0 S0
*

* These signals are clocked in at the end of the bus cycle by the
* OR’d combination of RD, WR and INTA.

*

**

*

* INITIALIZE

*

**

 SEARCH_LIMIT 5
 DEFAULT_WIDTH 20
 MAPPED_WIDTH 20
 LABEL_TITLE ̂ 8085 Mnemoniĉ
 BASE_TITLE ̂ hex̂

*

* Variables used by the inverse assembler

*

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-1

NEW_ADDRESS VARIABLE 0 ; ADDRESS TO FETCH
LOW_BYTE VARIABLE
HIGH_BYTE VARIABLE
LO_INPUT_ERROR VARIABLE
LO_INPUT_STATUS VARIABLE
MAP_FLAG VARIABLE
ADDRESS VARIABLE
INPUT_MODE VARIABLE
OPCODE_TEMP VARIABLE

*

* Constants used by the inverse assembler

*

ML16 CONSTANT 00000FFFFH

INPUT_ABS CONSTANT 0
INPUT_REL CONSTANT 1

STATUS_MASK CONSTANT 1011B
OPCODE_STATUS CONSTANT 0011B

UNKNOWN ASCII "unknown"
MEM_WRITE ASCII "memory write"
MEM_READ ASCII "memory read"
IO_WRITE ASCII "i/o write"
IO_READ ASCII "i/o read"
INT_ACK ASCII "interrupt ack"
HALT ASCII "halt"

*

* DISPLAY FORMATS

*

HEX4_FMT FORMAT 16,HEX,4 16 BITS, IN HEX, DISPLAY 4 DIGITS
HEX2_FMT FORMAT 8,HEX,2 8 BITS, IN HEX, DISPLAY 2 DIGITS

8085 Inverse Assembler HP 10391B IAL Development Package
A-2 Reference Manual

**

*

* Entry Point of Inverse Assembler

*

**

 SET INPUT_MODE,INPUT_ABS NORMALLY, ABSOLUTE READ

 SET RETURN_FLAGS,0 INITIALIZE FLAG TO NOT INSTR. LINE

 LOAD INITIAL_ADDRESS GET ADDRESS TO DISSASSEMBLE
 STORE NEW_ADDRESS

 IF INPUT_ERROR <> 0 THEN GOTO DATA_ERROR BRANCH IF ERROR
 IF TASK = 3 THEN GOTO ANALYSIS HP 64620S
 IF TASK = 4 THEN GOTO ANALYSIS HP 1630A/D & 1631A/D
 IF TASK = 5 THEN GOTO ANALYSIS HP 1630G, 1650A/B, 1651A/B, 16510A/B, & 16511B

ILLG_TASK

 OUTPUT "Illegal Task Request"
 ABORT

DATA_ERROR

 OUTPUT "Data error"
 ABORT

ILLEGAL_OPCODE

 OUTPUT "Illegal Opcode"
 ABORT

ANALYSIS

 LOAD INPUT_STATUS GET STATUS OF WHAT WAS READ
 AND STATUS_MASK MASK OUT HLDA
 IF 3,0 = OPCODE_STATUS THEN GOTO OPCODE_DECODE

*

* IF ITS NOT AN OPCODE, JUST SHOW THE DATA, FOLLOWED BY THE STATUS

*

 POSITION REL,2
 LOAD INPUT_DATA
 OUTPUT ACCUMULATOR,HEX2_FMT

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-3

MNE_STATUS

*

* DISPLAY THE STATUS OF THE MNEMONIC

*

*

* NOTE, THE STATUS TABLE BELOW IS CONSTRUCTED WITH THE S2 BIT (HLDA)
* AS A DONT CARE. ACTUALLY, BECAUSE OF THE STATE CLOCKING
* ARRANGEMENT (INTA or RD or WR), WE WILL NEVER SEE THE CONDITION
* WHERE HLDA IS HIGH.

 POSITION REL,1
 LOAD INPUT_STATUS
 AND STATUS_MASK MASK OUT HLDA
 CASE_OF 3,0
 OUTPUT UNKNOWN STATUS = 0000B
 OUTPUT MEM_WRITE STATUS = 0001B
 OUTPUT MEM_READ STATUS = 0010B
 OUTPUT UNKNOWN STATUS = 0011B
 OUTPUT UNKNOWN STATUS = 0100B
 OUTPUT MEM_WRITE STATUS = 0101B
 OUTPUT MEM_READ STATUS = 0110B
 OUTPUT UNKNOWN STATUS = 0111B
 OUTPUT HALT STATUS = 1000B
 OUTPUT IO_WRITE STATUS = 1001B
 OUTPUT IO_READ STATUS = 1010B
 OUTPUT INT_ACK STATUS = 1011B
 OUTPUT HALT STATUS = 1100B
 OUTPUT IO_WRITE STATUS = 1101B
 OUTPUT IO_READ STATUS = 1110B
 OUTPUT INT_ACK STATUS = 1111B
 CASE_END
 RETURN
OPCODE_DECODE

 SET RETURN_FLAGS,1 FLAG AN INSTRUCTION LINE (AS OPPOSED TO DATA)
 LOAD INPUT_DATA
 CASE_OF 7,6
 GOTO GROUP_1 ;B7-B6=0
 GOTO GROUP_2 1
 GOTO GROUP_3 2
 GOTO GROUP_4 3
 CASE_END

8085 Inverse Assembler HP 10391B IAL Development Package
A-4 Reference Manual

*
* Group 1
* MVI r,exp
* LXI dr,exp DAD dr
* STAX LDAX STA LDA SHLD LHLD
* INR DCR INX DCX
* RLC RRC RAL RAR CMA STC CMC DAA
* NOP RIM SIM
*

GROUP_1
 CASE_OF 2,0
 GOTO SPECIAL_1 00XX X000
 GOTO DAD_LXI 00XX X001
 GOTO LOD_STO 00XX X010
 GOTO INX_DCX 00XX X011
 GOTO INR 00XX X100
 GOTO DCR 00XX X101
 GOTO MVI 00XX X110
 GOTO LOGICAL_1 00XX X111
 CASE_END

*

* SPECIAL_1 - SPECIAL SYMBOLS

*

SPECIAL_1
 IF 3,3 = 1 THEN GOTO ILLEGAL_OPCODE 00XX 1000
 CASE_OF 5,4
 OUTPUT "NOP" 0000 0000
 GOTO ILLEGAL_OPCODE 0001 0000
 OUTPUT "RIM" 0010 0000
 OUTPUT "SIM" 0011 0000
 CASE_END
 RETURN

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-5

*

* DAD_LXI

*

DAD_LXI
 IF 3,3 = 0 THEN GOTO LXI 00XX 0001
 OUTPUT "DAD " 00XX 1001
 CALL LONG_REG
 RETURN

LXI
 OUTPUT "LXI "
 CALL LONG_REG
 OUTPUT ","
 CALL LEXPR_NO_MAP DONT MAP 16 BIT DATA QUANTITY
 RETURN

*

* LOD_STO

*

LOD_STO
 IF 5,5 = 0 THEN GOTO LDAX_STAX 000X X010
 CASE_OF 4,3
 OUTPUT "SHLD" 0010 0010
 OUTPUT "LHLD" 0010 1010
 OUTPUT "STA " 0011 0010
 OUTPUT "LDA " 0011 1010
 CASE_END
 STORE OPCODE_TEMP SAVE THE OPCODE ACROSS LEXPR
 POSITION REL,1
 CALL LEXPR
 RETURN

8085 Inverse Assembler HP 10391B IAL Development Package
A-6 Reference Manual

LDAX_STAX
 CASE_OF 3,3
 OUTPUT "STAX" 000X 0010
 OUTPUT "LDAX" 000X 1010
 CASE_END
 POSITION REL,1
 CALL LONG_REG
 RETURN

*

* INX_DCX

*

INX_DCX
 CASE_OF 3,3
 OUTPUT "INX" 00XX 0011
 OUTPUT "DCX" 00XX 1011
 CASE_END
 POSITION REL,2
 CALL LONG_REG
 RETURN

*

* INR

*

INR
 OUTPUT "INR "
 CALL DREG_NAME
 RETURN

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-7

*

* DCR

*

DCR
 OUTPUT "DCR "
 CALL DREG_NAME
 RETURN

*

* MVI

*

MVI
 OUTPUT "MVI "
 CALL DREG_NAME
 OUTPUT ","
 CALL EXPR
 RETURN

*

* LOGICAL_1

*

LOGICAL_1
 CASE_OF 5,3
 OUTPUT "RLC" 0000 0111
 OUTPUT "RRC" 0000 1111
 OUTPUT "RAL" 0001 0111
 OUTPUT "RAR" 0001 1111
 OUTPUT "DAA" 0010 0111
 OUTPUT "CMA" 0010 1111
 OUTPUT "STC" 0011 0111
 OUTPUT "CMC" 0011 1111
 CASE_END
 POSITION REL,2
 RETURN

8085 Inverse Assembler HP 10391B IAL Development Package
A-8 Reference Manual

*

* Group 2

*

GROUP_2
 IF 7,0 <> 01110110B THEN GOTO MOVES BRANCH IF NOT HALT INSTR
 OUTPUT "HLT"
 RETURN

MOVES
 OUTPUT "MOV "
 CALL DREG_NAME
 OUTPUT ","
 CALL SREG_NAME
 RETURN

*

* Group 3

*

GROUP_3
 CASE_OF 5,3
 OUTPUT "ADD" 1000 0XXX
 OUTPUT "ADC" 1000 1XXX
 OUTPUT "SUB" 1001 0XXX
 OUTPUT "SBB" 1001 1XXX
 OUTPUT "ANA" 1010 0XXX
 OUTPUT "XRA" 1010 1XXX
 OUTPUT "ORA" 1011 0XXX
 OUTPUT "CMP" 1011 1XXX
 CASE_END
 POSITION REL,2

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-9

 CALL SREG_NAME
 RETURN

*

* Group 4

*

GROUP_4
 CASE_OF 2,0
 GOTO Rcc 11XX X000
 GOTO POP_RET 11XX X001
 GOTO Jcc 11XX X010
 GOTO JMP_IO 11XX X011
 GOTO Ccc 11XX X100
 GOTO PUSH_CALL 11XX X101
 GOTO Immediate 11XX X110
 GOTO RST 11XX X111
 CASE_END
 GOTO ILLEGAL_OPCODE

*

* Rcc

*

Rcc
 OUTPUT "R"
 CALL COND_CODES
 RETURN

*

* POP_RET Etc.

*

8085 Inverse Assembler HP 10391B IAL Development Package
A-10 Reference Manual

POP_RET
 IF 3,3 = 1 THEN GOTO RET_PCHL_SPHL 11XX 1001
 OUTPUT "POP " 11XX 0001
 CALL LONG_REG
 RETURN

RET_PCHL_SPHL
 CASE_OF 5,4
 OUTPUT "RET " 1100 1001
 GOTO ILLEGAL_OPCODE 1101 1001
 OUTPUT "PCHL " 1110 1001
 OUTPUT "SPHL " 1111 1001
 CASE_END
 RETURN

*

* Jcc

*

Jcc
 OUTPUT "J"
 CALL COND_CODES
 POSITION REL,2
 CALL LEXPR GET 2 BYTES
 RETURN

*

* JMP_IO Etc.

*

JMP_IO
 CASE_OF 5,3
 GOTO JMP 1100 0011
 GOTO ILLEGAL_OPCODE 1100 1011
 GOTO OUT_IN 1101 0011
 GOTO OUT_IN 1101 1011

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-11

 OUTPUT "XTHL " 1110 0011
 OUTPUT "XCHG " 1110 1011
 OUTPUT "DI " 1111 0011
 OUTPUT "EI " 1111 1011
 CASE_END
 RETURN

JMP OUTPUT "JMP "
 CALL LEXPR
 RETURN

OUT_IN
 CASE_OF 3,3
 OUTPUT "OUT " 1101 0011
 OUTPUT "IN " 1101 1011
 CASE_END
 CALL EXPR
 RETURN

*

* Ccc

*

Ccc
 OUTPUT "C"
 CALL COND_CODES
 POSITION REL,2
 CALL LEXPR
 RETURN

*

* PUSH_CALL

*

PUSH_CALL
 IF 3,3 = 0 THEN GOTO PUSH 11XX 0101

8085 Inverse Assembler HP 10391B IAL Development Package
A-12 Reference Manual

 IF 5,3 <> 001 THEN GOTO ILLEGAL_OPCODE
 OUTPUT "CALL " 1100 1101
 CALL LEXPR
 RETURN

PUSH OUTPUT "PUSH "
 CALL LONG_REG
 RETURN

*

* Immediate

*

Immediate
 CASE_OF 5,3
 OUTPUT "AD" 1100 0110
 OUTPUT "AC" 1100 1110
 OUTPUT "SU" 1101 0110
 OUTPUT "SB" 1101 1110
 OUTPUT "AN" 1110 0110
 OUTPUT "XR" 1110 1110
 OUTPUT "OR" 1111 0110
 OUTPUT "CP" 1111 1110
 CASE_END
 OUTPUT "I "
 CALL EXPR
 RETURN

*

* RST

*

RST
 OUTPUT "RST "
 CASE_OF 5,3
 OUTPUT "0" 1100 0111
 OUTPUT "1" 1100 1111

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-13

 OUTPUT "2" 1101 0111
 OUTPUT "3" 1101 1111
 OUTPUT "4" 1110 0111
 OUTPUT "5" 1110 1111
 OUTPUT "6" 1111 0111
 OUTPUT "7" 1111 1111
 CASE_END
 RETURN

*

* COND_CODES - OUTPUT CONDITION CODES

*

COND_CODES
 CASE_OF 5,3
 OUTPUT "NZ" XX00 0XXX
 OUTPUT "Z " XX00 1XXX
 OUTPUT "NC" XX01 0XXX
 OUTPUT "C " XX01 1XXX
 OUTPUT "PO" XX10 0XXX
 OUTPUT "PE" XX10 1XXX
 OUTPUT "P " XX11 0XXX
 OUTPUT "M " XX11 1XXX
 CASE_END
 RETURN

*

* DREG_NAME - OUTPUT DESTINATION REGISTER NAME

*

DREG_NAME
 CASE_OF 5,3
 OUTPUT "B" XX00 0XXX
 OUTPUT "C" XX00 1XXX
 OUTPUT "D" XX01 0XXX
 OUTPUT "E" XX01 1XXX
 OUTPUT "H" XX10 0XXX

8085 Inverse Assembler HP 10391B IAL Development Package
A-14 Reference Manual

 OUTPUT "L" XX10 1XXX
 OUTPUT "M" XX11 0XXX
 OUTPUT "A" XX11 1XXX
 CASE_END
 RETURN

*

* SREG_NAME - OUTPUT SOURCE REGISTER NAME

*

SREG_NAME
 CASE_OF 2,0
 OUTPUT "B" XXXX X000
 OUTPUT "C" XXXX X001
 OUTPUT "D" XXXX X010
 OUTPUT "E" XXXX X011
 OUTPUT "H" XXXX X100
 OUTPUT "L" XXXX X101
 OUTPUT "M" XXXX X110
 OUTPUT "A" XXXX X111
 CASE_END
 RETURN

*

* LONG_REG OUTPUT LONG REGISTER NAME

*

LONG_REG
 CASE_OF 5,4
 OUTPUT "B" XX00 XXXX
 OUTPUT "D" XX01 XXXX
 OUTPUT "H" XX10 XXXX
 OUTPUT "SP" POSSIBLY OVERWRITTEN BY PSW CONDITION
 CASE_END
 IF 7,4 <> 0FH THEN RETURN 1111 XXXX
 POSITION REL,-2
 OUTPUT "PSW"
 RETURN

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-15

*

* LEXPR OUTPUT 16-BIT HEX VALUE IN NEXT TWO BYTES

*

LEXPR
 SET MAP_FLAG,0 PRESET TO DO ADDRESS MAPPING
 GOTO MAP_SET

LEXPR_NO_MAP
 SET MAP_FLAG,1 PRESET FOR NO MAPPING

MAP_SET
 CALL NEXT_BYTE GET LOW BYTE OF DATA
 STORE LOW_BYTE SAVE THE LOW ORDER BYTE
 LOAD INPUT_ERROR GET ERROR FLAG
 STORE LO_INPUT_ERROR SAVE ERROR FLAG IN TEMPORARY
 LOAD INPUT_STATUS
 AND STATUS_MASK MASK OUT HLDA
 STORE LO_INPUT_STATUS

 CALL NEXT_BYTE GET HIGH BYTE OF DATA
 STORE HIGH_BYTE SAVE THE HIGH ORDER BYTE

 ROTATE LEFT,8 MOVE HIGH BYTE TO UPPER 8 BITS
 INCLUSIVE_OR LOW_BYTE PUT THE 2 BYTES TOGETHER
 AND ML16 ONLY LOWER 16 BITS ARE VALID ADDRESS
 STORE ADDRESS SAVE THE 16 BIT ADDRESS

 LOAD INPUT_STATUS
 AND STATUS_MASK MASK OUT HLDA
 IF 3,0 = OPCODE_STATUS THEN GOTO HI_WAS_OPCODE
 IF LO_INPUT_STATUS = OPCODE_STATUS THEN GOTO NOT_ASSOCIATED
 IF INPUT_ERROR = 0 THEN GOTO SHOW_CHECK BRANCH IF NO DATA READ ERROR

HI_WAS_OPCODE
NOT_ASSOCIATED
 OUTPUT "**" NO HIGH BYTE FOUND
 SET MAP_FLAG,1 SET TO SKIP ADDRESS MAPPING
 GOTO CHECK_LOW CHECK FOR THE LOW ORDER BYTE

8085 Inverse Assembler HP 10391B IAL Development Package
A-16 Reference Manual

SHOW_CHECK
 IF MAP_FLAG = 0 THEN GOTO CHECK_LOW BRANCH IF STILL MAPPING
 LOAD HIGH_BYTE GET UPPER BYTE
 OUTPUT ACCUMULATOR,HEX2_FMT DISPLAY THE HIGH BYTE

CHECK_LOW
 IF LO_INPUT_STATUS = OPCODE_STATUS THEN GOTO LO_WAS_OPCODE
 IF LO_INPUT_ERROR = 0 THEN GOTO SHOW_LOW BRIF NO DATA READ ERROR

LO_WAS_OPCODE
 OUTPUT "**" NO LOW BYTE FOUND
 RETURN NO MAPPING, WE ARE FINISHED

SHOW_LOW
 IF MAP_FLAG = 0 THEN GOTO MAPPER BRANCH IF MAPPING ALLOWED
 LOAD LOW_BYTE GET THE LOW ORDER BYTE
 OUTPUT ACCUMULATOR,HEX2_FMT DISPLAY THE LOWER BYTE
 RETURN LEAVE

MAPPER
 LOAD ADDRESS GET THE 16 BIT ADDRESS
 IF_NOT_MAPPED THEN OUTPUT ACCUMULATOR,HEX4_FMT
 RETURN

*

* EXPR OUTPUT 8-BIT HEX VALUE IN NEXT BYTE

*

EXPR

 CALL NEXT_BYTE GET THE BYTE AFTER THE OPCODE
 LOAD INPUT_STATUS destroys data in accumulator from NEXT_BYTE
 AND STATUS_MASK MASK OUT HLDA
 IF 3,0 <> OPCODE_STATUS THEN GOTO EXPR_HEX2 BRANCH IF DATA FOUND
 OUTPUT "**" FLAG THE BYTE AS NOT FOUND
 RETURN

EXPR_HEX2
 LOAD INPUT_DATA RELOAD DATA

HP 10391B IAL Development Package 8085 Inverse Assembler
Reference Manual A-17

 OUTPUT ACCUMULATOR,HEX2_FMT
 RETURN

*

* GET NEXT BYTE FROM ANALYSIS DATA

* INCREMENTS INPUT_ADDRESS, NEW_ADDRESS AND RETURN_COUNT

*

NEXT_BYTE
 INCREMENT NEW_ADDRESS MOVE AHEAD TO NEXT ADDRESS

GET_BYTE

*

* ENTRY POINT TO READ THE DESIRED BYTE WITHOUT INCREMENTING NEW_ADDRESS

*

 LOAD INPUT_MODE SEE WHICH INPUT MODE WE’RE IN
 CASE_OF 0,0
 INPUT ABS,NEW_ADDRESS READ THE DATA
 INPUT REL,NEW_ADDRESS
 CASE_END
 LOAD INPUT_DATA SET ACCUMULATOR TO DATA READ
 RETURN

8085 Inverse Assembler HP 10391B IAL Development Package
A-18 Reference Manual

B
Microprocessors with Incomplete Status

Introduction The Intel 8085 instructions decoded in chapters 2 and 3 were easy to
disassemble because of the status information provided by the
microprocessor. In the 8085, the value 0011B under the STAT label
indicates that this state is the first state of an opcode fetch. Any other
kind of bus cycle has a different status.

When disassembling 8085 operations, the inverse assembler goes
through the following steps:

1. Load INPUT_STATUS for the state to be disassembled.

2. If the value of INPUT_STATUS represents an opcode fetch, go
to the routine for decoding opcode fetches.

3. If the value of INPUT_STATUS indicates any other kind of bus
cycle, display only the value in INPUT_DATA and the cycle type.

Not all microprocessors provide a unique value under the STAT label
for the first byte of an opcode fetch. This appendix explains how to
deal with this problem.

Note
This section uses examples based on the Motorola 68010. A complete
listing of the 68010 inverse assembler is provided in appendix C.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-1

Using
INPUT_TAG to
Mark States

The Motorola 68010 microprocessor does not uniquely identify which
bus cycle contains the first word of an instruction fetch. For example,
the 68010 instruction:

JMP 00255A

would be captured as follows by the logic analyzer:

Label > ADDR DATA 68010 Mnemonic STAT
Base > Hex Hex Hex Symbol

+ 0000 00201E 4EF9 JMP 00255A SUPR PRGM READ
+ 0001 002020 0000 0000 supr program read SUPR PRGM READ
+ 0002 002022 255A 255A supr program read SUPR PRGM READ
+ 0003 00255A (Next 68010 instruction)

.

.

.

State 0000 above contains the opcode for the JMP instruction under
the DATA label. States 0001 and 0002 contain the destination address
of the JMP opcode. Note that all three of these states have the same
value under the STAT label. (In this example, the STAT value has
been interpreted by the STAT symbol table to make it easier to read.
Also, the raw data captured by the logic analyzer is displayed under the
data label next to the mnemonic field.)

If the inverse assembler follows the same procedure as the 8085, here is
what will happen, beginning with line 0000:

1. Load INPUT_STATUS for state 0000. Since this value
represents a program read, go to the routine that decodes opcode
fetches.

2. Decode the 4EF9H in INPUT_DATA. This will put the ASCII
string

JMP

into the output display buffer.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-2 Reference Manual

3. Look forward into states 0001 and 0002 to get the destination
address for JMP. This is done using the INPUT,ABS instruction.

4. Calculate the destination address for the JMP instruction and put
it into the output display buffer. At this point, the disassembly
process for state 0000 is complete. The following is in the output
display buffer:

JMP 00255A

Using the same process for state 0001:

1. Load INPUT_STATUS for state 0001. Since this value
represents a program read, go to the routine that decodes opcode
fetches.

2. Decode the 0000H in INPUT_DATA. This will put the ASCII
string

ORI.B

into the output display buffer.

Step 2 is incorrect for state 0001. State 0001 is not the ORI.B opcode.
It is part of the operand for the opcode in state 0000. This confusion is
a direct result of the limited status information generated by the 68010.
The information in STAT must be supplemented to differentiate
between a state that contains an opcode fetch and a state that contains
operands.

The communication variable INPUT_TAG can be used to supplement
the information provided by INPUT_STATUS. Each state has a tag
associated with it. The inverse assembler can use the lower 16 bits of
the tag to mark a state for later reference. In the case of the 68010, the
tags are used to mark a state as an operand that has already been
decoded.

To mark the tags for a state, use the TAG_WITH instruction. The tags
are read through the INPUT_TAG communication variable.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-3

Here is how the 68010 disassembly process would operate when using
the tag bits to supplement the INPUT_STATUS information:

1. Load INPUT_STATUS for state 0000. Since this value
represents a program read, go to the routine that decodes opcode
fetches.

2. Load INPUT_TAG for state 0000. Check if this state was tagged
to supplement the INPUT_STATUS information. Since this
state is the first state of an opcode fetch, the tag value of bits 0
through 5 will be 0.

3. Decode the 4EF9H in INPUT_DATA. This will put the ASCII
string

JMP

into the output display buffer.

4. Look forward into states 0001 and 0002 to get the destination
address for JMP. This is done using the INPUT,ABS instruction.
Tag states 0001 and 0002 with the TAG_WITH instruction to
indicate that they have already been used as an operand for
decoding state 0000.

5. Calculate the destination address for the JMP instruction and put
it into the output display buffer. At this point, the disassembly
process for state 0000 is complete. The following is in the output
display buffer:

JMP 00255A

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-4 Reference Manual

These same steps are used for decoding state 0001.

1. Load INPUT_STATUS for state 0001. Since this value
represents a program read, go to the routine that decodes opcode
fetches.

2. Load INPUT_TAG for state 0001. Check if this state was tagged
to supplement the INPUT_STATUS information. In this case,
state 0001 was tagged as an operand when state 0000 was
disassembled. Branch to a routine that will display only the value
of INPUT_DATA and the type of bus cycle.

3. Read INPUT_DATA and put its value in the output display
buffer. Read INPUT_STATUS and decode its value into the
cycle type. Put the cycle type into the output display buffer to
finish disassembling state 0001. At this time the output display
buffer will hold:

0000 supr program read

Using the tags associated with each state allows the inverse assembler
to supplement the status provided by the 68010. This supplement
allows the inverse assembler to correctly decode the operands of an
instruction.

Software
Compatibility
with other
Logic Analyzers

As mentioned in chapter 3, Hewlett-Packard’s Inverse Assembly
Language is compatible with several different logic analyzers and
emulators. The TASK communication variable is used to identify
which environment the inverse assembler is running in.

The HP 1630 and HP 1631 logic analyzers do not use bits 2 through 15
of the INPUT_TAG. User-tags in those instruments are limited to bits
0 and 1. If the source code will be used for more than one family of
logic analyzers, the inverse assembler should only use bits 0 and 1 of
the INPUT_TAG to insure compatibility.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-5

Synchronizing
the Inverse
Assembler to
the Captured
Data

In the previous section, tag bits 0 through 5 were used to help
differentiate between the first state of an opcode fetch and the
operands for that fetch. Unfortunately, this solution only solves some
of the problems caused by microprocessors with incomplete status.

In the previous example, line 0000 was assumed to be the first state of
an opcode fetch. This was an arbitrary assumption; in general there is
no way to determine which state contains the first line of an opcode
fetch when inverse assembling 68010 bus cycles. As previously shown,
once the inverse assembler is synchronized to the information captured
by the logic analyzer, the inverse assembler can work properly, using
the tag bits.

The problem, then, is to find some way of synchronizing the inverse
assembler to captured data. Once synchronized , the tag bits can be
used to supplement the status provided by the microprocessor to insure
correct inverse assembly.

The "Invasm"
Field

The HP 1650A/B, HP 1651A/B, HP 16510A/B, and HP 16511B Logic
Analyzers provide a field to allow you to manually synchronize the
inverse assembler to the captured data. This field is called "Invasm"
and is located in the middle of the first line of the Display menu.

Note
The "Invasm" field is not normally displayed in the Display menu.
When an inverse assembler is downloaded to the logic analyzer disk,
you can specify if this field is needed. If the field is needed by the
inverse assembler, it will be turned on when the inverse assembler is
loaded into the logic analyzer.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-6 Reference Manual

The following steps explain how to use the "Invasm" field to
synchronize the inverse assembler to the captured data:

1. Identify a state on the logic analyzer screen that is the first state
of an instruction fetch. This can often be determined from the
address and status captured in the state.

2. Roll this state up to the top line on the state listing.

3. Select the "Invasm" field. This tells the inverse assembler that the
top line on the state listing is the first state of an opcode fetch.
The inverse assembler is now synchronized to the captured data.

The "Invasm" field is an inverse assembler control feature used to
synchronize the inverse assembler to the captured data. It uses
INPUT_TAG bits 16 and 17 to communicate with the inverse
assembler.

Note
INPUT_TAG bits 0 through 15 are user tags. As previously discussed,
the inverse assembler can read and write these tags to mark states.
INPUT_TAG bits 16 and 17 are system tags and are completely under
the control of the logic analyzer. The inverse assembler has READ
ONLY access to bits 16 and 17 of INPUT_TAG.

Inverse assemblers that do not require the "Invasm" field to synchronize
to captured data can completely ignore bits 16 and 17.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-7

INPUT_TAG
Values and
How They
Change

INPUT_TAG bits 16 and 17 are interpreted as shown in the following
table:

 Bit 17 Bit 16 Description

0 0 Not disassembled and is ILLEGAL for the
inverse assembler to do so. The "Invasm"
field has not been selected.

0 1 Not disassembled and is legal for the
inverse assembler to do so. The "Invasm"
field has been selected.

1 0 Disassembled and is not the first state
of an opcode fetch.

1 1 Disassembled and is the first state of an
opcode fetch.

After the logic analyzer has made a measurement, INPUT_TAG bits
16 and 17 start with a value of 0. At this point, the "Invasm" field has
not been selected to synchronize the inverse assembler. None of the
lines on the screen have been disassembled. In fact, it is illegal for the
inverse assembler to disassemble a state when bits 16 and 17 are 0.
Instead, the inverse assembler should be written to display only the
value in INPUT_DATA and the kind of bus cycle indicated by the
value in INPUT_STATUS.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-8 Reference Manual

For the 68010 example, here is what should be on the logic analyzer
display before the "Invasm" field is selected:

Label > ADDR DATA 68010 Mnemonic STAT
Base > Hex Hex Hex Symbol

+ 0000 00201E 4EF9 4EF9 supr program read SUPR PRGM READ
+ 0001 002020 0000 0000 supr program read SUPR PRGM READ
+ 0002 002022 255A 255A supr program read SUPR PRGM READ
+ 0003 00255A (Next 68010 instruction)

.

.

.

When the "Invasm" field is selected, the analyzer sets INPUT_TAG bit
17 to 0 and bit 16 to 1 for the first state on the display. This indicates to
the inverse assembler that it can disassemble this state. After doing so,
the inverse assembler returns control to the analyzer. At this time, the
analyzer tags the NEXT state with bit 17 equal to 0 and bit 16 equal to
1 (legal to disassemble). With this method, the remainder of the trace
list can be disassembled using a single selection of the "Invasm" field.
Rolling forward will disassemble the last line on the screen as it scrolls
onto the display.

Note
The logic analyzer only disassembles states on the instrument screen.
Jumping to a different area of the trace memory will cause the inverse
assembler to loose synchronization with the captured data. Also,
rolling the screen backwards to display lines before the first state that
was disassembled will cause previous lines to not be disassembled.

In both of these cases, you must re-synchronize the inverse assembler
by repeating the process shown on page B-7.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-9

In the 68010 inverse assembler, the first communication variable
checked is INPUT_TAG bits 16 and 17. If the value in bits 16 and 17 is
0, the inverse assembler will only display the value of INPUT_DATA
and the cycle type. For any other value, the inverse assembler will try
to disassemble the state.

Here are the steps executed on state 0000 in the previous example if
the "Invasm" field has not been selected:

1. Load INPUT_TAG for state 0000. Check the value in bits 16 and
17. Since "Invasm" has not been selected, the value here will be 0
(Not safe to inverse assemble). Branch to a routine that will
display only the value of INPUT_DATA and the type of bus cycle.

2. Load INPUT_DATA and put its value in the output display
buffer. Read INPUT_STATUS and decode its value into the
cycle type. Put the cycle type into the output display buffer to
finish disassembling state 0000. At this time the output display
buffer will hold:

4EF9 supr program read

To synchronize the inverse assembler to the acquired information, you
should scroll state 0000 to the top of the listing. When "Invasm" is
selected, the inverse assembler does the following for this state:

1. Load INPUT_TAG for state 0000. Check the value in bits 16 and
17. Since "Invasm" has been selected, the value here will be 01B
(Safe to inverse assemble). Branch to the routine that decodes
opcodes.

2. Check bits 0 through 15 of INPUT_TAG to see if this state was
tagged to supplement the INPUT_STATUS information. Since
this state is the first state of an opcode fetch, the tag value of bits
0 through 15 will be 0.

3. Load INPUT_STATUS for state 0000. Since this value
represents a program read, continue to decode this state as an
opcode fetch.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-10 Reference Manual

4. Decode the 4EF9H in INPUT_DATA. This will put the ASCII
string

JMP

into the output display buffer.

5. Look forward into states 0001 and 0002 to get the destination
address for JMP. This is done using the INPUT,ABS instruction.
Tag states 0001 and 0002 with the TAG_WITH instruction to
indicate that they have already been used as an operand for
decoding state 0000.

6. Calculate the destination address for the JMP instruction and put
it into the output display buffer. At this point, the disassembly
process for state 0000 is complete. The following is in the output
display buffer:

JMP 00255A

7. When the inverse assembler returns control to the logic analyzer,
tag bits 16 and 17 of the next state (state 0001) will be set to 01B.

The logic analyzer now calls the inverse assembler to decode the next
state. The disassembler will go through the following steps for state
0001:

1. Load INPUT_TAG for state 0001. Check the value in bits 16 and
17. Since "Invasm" has been selected, the value here will be 01B
(Safe to inverse assemble). Branch to the routine that decodes
opcodes.

2. Load INPUT_TAG for state 0001. Check if this state was tagged
to supplement the INPUT_STATUS information. In this case,
state 0001 was tagged as an operand when state 0000 was
disassembled. Branch to a routine that will display only the value
of INPUT_DATA and the type of bus cycle.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-11

3. Read INPUT_DATA and put its value in the output display
buffer. Read INPUT_STATUS and decode its value into the
cycle type. Put the cycle type into the output display buffer to
finish disassembling state 0001. At this time the output display
buffer will hold:

0000 supr program read

4. When the inverse assembler returns control to the logic analyzer,
tag bits 16 and 17 of state 0002 will be set to 01B.

Using
RETURN_FLAGS

In chapter 3, bits 16 and 17 of the RETURN_FLAGS communication
variable were used to indicate the results of an IF_NOT_MAPPED
instruction. RETURN_FLAGS can also be used to mark states that
are the first state in an opcode fetch.

Executing the

SET RETURN_FLAGS,0

instruction in the inverse assembler indicates to the logic analyzer that
the current state being decoded DOES NOT CONTAIN the first state
of an instruction fetch. Executing

SET RETURN_FLAGS,1

indicates that the current state DOES CONTAIN the first state of an
instruction fetch.

Note
The commands above are setting RETURN_FLAGS, bit 0 to a 0 or a 1.

Setting bit 0 of RETURN_FLAGS also affects bits 16 and 17 of
INPUT_TAG. When bit 0 of RETURN_FLAGS is set by using the set
RETURN_FLAGS statement, bit 17 of INPUT_TAG is set to 1. Bit
16 of INPUT_TAG is set to the value of RETURN_FLAGS bit 0.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-12 Reference Manual

When bits 16 and 17 of INPUT_TAG are set to a 10B or 11B, it
indicates the state has already been disassembled. In most cases, the
inverse assembler should not try to inverse assemble a line that has
already been decoded.

To complete the 68010 example, then, steps must be added to mark bit
0 of RETURN_FLAGS to insure a line will not be inverse assembled
twice. For state 0000, the following steps would be performed:

1. Load INPUT_TAG for state 0000. Check the value in bits 16 and
17. Since "Invasm" has been selected, the value here will be 01B
(Safe to inverse assemble). Branch to the routine that decodes
opcodes.

2. Check bits 0 through 15 of INPUT_TAG to see if this state was
tagged to supplement the INPUT_STATUS information. Since
this state is the first state of an opcode fetch, the tag value of bits
0 through 15 will be 0.

3. Load INPUT_STATUS for state 0000. Since this value
represents a program read, continue to decode this state as an
opcode fetch.

4. Set RETURN_FLAGS bit 0 to 1, to indicate that this state is the
first state of an instruction fetch.

5. Decode the 4EF9H in INPUT_DATA. This will put the ASCII
string

JMP

into the output display buffer.

6. Look forward into states 0001 and 0002 to get the destination
address for JMP. This is done using the INPUT,ABS instruction.
If bits 16 and 17 of INPUT_TAG for states 0001 and 0002 are
marked as "already disassembled", do not complete the inverse
assembly for state 0000. In this case, these tag bits are still set to
0.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-13

7. Tag states 0001 and 0002 with the TAG_WITH instruction to
indicate that they have already been used as an operand for
decoding state 0000. This statement is operating on bits 0
through 15 of the INPUT_TAG.

8. Calculate the destination address for the JMP instruction and put
it into the output display buffer. At this point, the disassembly
process for state 0000 is complete. The following is in the output
display buffer:

JMP 00255A

9. When the inverse assembler returns control to the logic analyzer,
tag bits 16 and 17 of the next state (state 0001) will be set to 01B.
Tag bits 16 and 17 of this state (state 0000) are set to 11B.

The steps for state 0001 are similar:

1. Load INPUT_TAG for state 0001. Check if this state was tagged
to supplement the INPUT_STATUS information. In this case,
state 0001 was tagged as an operand when state 0000 was
disassembled. Branch to a routine that will display only the value
of INPUT_DATA and the type of bus cycle.

2. Set RETURN_FLAGS bit 0 to 0, to indicate that this state is not
the first state of an instruction fetch.

3. Read INPUT_DATA and put its value in the output display
buffer. Read INPUT_STATUS and decode its value into the
cycle type. Put the cycle type into the output display buffer to
finish disassembling state 0001. At this time the output display
buffer will hold:

0000 supr program read

4. When the inverse assembler returns control to the logic analyzer,
tag bits 16 and 17 of state 0002 will be set to 01B. Tag bits 16 and
17 of this state (state 0001) are set to 10B.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-14 Reference Manual

Summary of
INPUT_TAGS
Bits 16 and 17

In summary, INPUT_TAG bits 16 and 17 are used with the "Invasm"
field in the logic analyzer Display menu to allow you to "point" to the
line that contains the first state of an opcode fetch. This allows the
inverse assembler to synchronize to the captured data on
microprocessors that provide incomplete status.

Bits 16 and 17 are interpreted as follows:

 Bit 17 Bit 16 Description

0 0 Not disassembled and is ILLEGAL for the
inverse assembler to do so. The "Invasm"
field has not been selected.

0 1 Not disassembled and is legal for the
inverse assembler to do so. The "Invasm"
field has been selected.

1 0 Disassembled and is not the first state
of an opcode fetch. This value was generated
when the SET RETURN_FLAGS,0 instruction was
executed.

1 1 Disassembled and is the first state of an
opcode fetch. This value was generated
when the SET RETURN_FLAGS,1 instruction was
executed.

The "Invasm" field with no options, as discussed here, is enabled by
selecting "B" for the final input of the IALDOWN program. See
chapter 1 for additional information.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-15

States
Containing
Multiple
Opcodes

In the 68010 example, the start of an opcode fetch could be identified
by pointing to a specific state. For some microprocessors, simply
pointing to a state may not be sufficient to uniquely identify where an
opcode starts.

For example, the Motorola 68020 is a 32-bit microprocessor. Opcodes
can start in the high or low 16-bit word contained in a 68020 32-bit
fetch. In this case you need to point to the high or low word of a
specific state.

As another example, the Intel 80386 is a 32-bit microprocessor where
an opcode can start in any of the four byte positions of the 32-bit fetch.
In addition, the 80386 can run two kinds of object code: object code
originally designed for Intel’s 16-bit microprocessors (such as the 8086)
or object code designed specifically for the 80386 32-bit instruction set.
So, when pointing to a state that holds the start of an instruction fetch,
you must point to one of four bytes in the 32-bit word. Also, you must
indicate if the instructions are from Intel’s 16- or 32-bit instruction set.

The following section will describe how to handle both of the situations
described above.

The "Invasm"
Field Revisited

When discussing the 68010 inverse assembler, the "Invasm" field was
used to synchronize the inverse assembler to the captured information.
In the case discussed, selecting the "Invasm" field set INPUT_TAGS
bits 16 and 17 to 01B.

As previously noted, the "Invasm" field is normally not displayed in the
Display Menu. When an inverse assembler is downloaded to the logic
analyzer disk, you can specify if this field is needed. If the field is
needed by the inverse assembler, it will be turned on when the inverse
assembler is loaded into the logic analyzer.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-16 Reference Manual

The download program, IALDOWN, provides four options related to
the "Invasm" field. When downloading the inverse assembler,
IALDOWN will ask which option is required for the "Invasm" field.
The options available are:

Option Description

 A No "Invasm" field needed. Do not display.
This was the option selected for the 8085
inverse assembler.

B "Invasm" field needed. No other options
required. This was the option selected for
the 68010 inverse assembler.

C "Invasm" field needed. When "Invasm" is
selected, provide a pop-up on the logic
analyzer screen that provides the following
two choices:

High
Low

D "Invasm" field needed. When "Invasm" is
selected, provide a pop-up on the logic
analyzer screen that provides the following
eight choices:

Size 16, Byte 0
Size 16, Byte 1
Size 16, Byte 2
Size 16, Byte 3
Size 32, Byte 0
Size 32, Byte 1
Size 32, Byte 2
Size 32, Byte 3

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-17

For options B, C, and D, bits 16 and 17 of INPUT_TAG are
interpreted as follows:

 Bit 17 Bit 16 Description

0 0 Not disassembled and is ILLEGAL for the
inverse assembler to do so. The "Invasm"
field has not been selected.

0 1 Not disassembled and is legal for the
inverse assembler to do so. The "Invasm"
field has been selected.

1 0 Disassembled and is not the first state
of an opcode fetch. This value was generated
when the SET RETURN_FLAGS,0 instruction was
executed.

1 1 Disassembled and is the first state of an
opcode fetch. This value was generated
when the SET RETURN_FLAGS,1 instruction was
executed.

For options C and D, the communication variables INITIAL_FLAGS
and INITIAL_OPTIONS are used to tell the inverse assembler which
field was selected in the pop-up.

For both options C and D, bit 1 of INITIAL_FLAGS is set to 1 if a
field has been selected.

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-18 Reference Manual

For option C, INITIAL_OPTIONS bit 0 is set as follows:

Bit 0 Field selected in pop-up

0 High
1 Low

For option D, INITIAL_OPTIONS bits 0 through 3 are set as follows:

 Bit 3 Bit 2 Bit 1 Bit 0 Field selected in pop-up

0 1 0 0 Size 16, Byte 0
0 1 0 1 Size 16, Byte 1
0 1 1 0 Size 16, Byte 2
0 1 1 1 Size 16, Byte 3
1 0 0 0 Size 32, Byte 0
1 0 0 1 Size 32, Byte 1
1 0 1 0 Size 32, Byte 2
1 0 1 1 Size 32, Byte 3

All other combinations of bits 0 through 3 in INITIAL_OPTIONS are
unimplemented.

The inverse assembler can use this additional information when parsing
through an opcode. For instance, when disassembling the Motorola
68020, option C is used. If the Low field is selected in the "Invasm"
pop-up, the inverse assembler will ignore the high word of
INPUT_DATA and begin inverse assembly with the low word of
INPUT_DATA.

Figure B-1 is an overview of the "Invasm" field.

Code
Synchronization
with the
HP 1630/31
Logic Analyzers

The HP 1630 family of logic analyzers do not support options C and D
of the download program IALDOWN. Only the simple
synchronization using option B is available with these instruments. If
the source code will also be used for the HP 1630A/D/G or
HP 1631A/D, do not use the INITIAL_FLAGS or
INITIAL_OPTIONS communication variables.

HP 10391B IAL Development Package Microprocessors with Incomplete Status
Reference Manual B-19

Figure B-1. Invasm Field Mechanism

Microprocessors with Incomplete Status HP 10391B IAL Development Package
B-20 Reference Manual

C
68010
Inverse Assembler

"IAL"

**

*

* INVERSE ASSEMBLER FOR THE 68010 MICROPROCESSOR

*

**

*

* THE LOGIC ANALYZER CAPTURES 24 ADDRESS LINES, 16 DATA LINES AND
* 8 STATUS LINES ON THE RISING EDGE OF LAS.

*

* THE 8 STATUS LINES FOR THIS INVERSE ASSEMBLER ARE:

*

* BIT 0 --- R/LW (CPU PIN 9)
* BIT 1 --- LLDS (CPU PIN 8)
* BIT 2 --- LUDS (CPU PIN 7)
* BIT 3 --- LVMA (CPU PIN 19)
* BIT 4 --- FC0 (CPU PIN 28)
* BIT 5 --- FC1 (CPU PIN 27)
* BIT 6 --- FC2 (CPU PIN 26)
* BIT 7 --- LBGACK (CPU PIN 12)

*

**

EA_TYPE VARIABLE 0 ; TYPE OF EA REQUESTED
REG_FIELD VARIABLE 0 ; VALUE OF THE REGISTER FIELD
MODE_FIELD VARIABLE 0 ; VALUE OF THE MODE FIELD
SIZE_FIELD VARIABLE 0 ; VALUE OF THE SIZE FIELD

DISASSEMBLY_BLOCK VARIABLE 0 ; TRUE/FALSE - IS BLOCK ENCOUNTERED?

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-1

RD_STATUS VARIABLE 0 ; HIGH/LOW BYTE READ FAILURES
HIGH_BYTE VARIABLE 0 ; HIGH ORDER 32 BIT ADDRESS BYTE
LOW_BYTE VARIABLE 0 ; LOW ORDER 32 BIT ADDRESS BYTE
INT VARIABLE 0 ; TRUE = INTERRUPT ACK
SR_ACCESS VARIABLE 0 ; TRUE = SR ACCESS OK, FALSE OTHERWISE

TEMP1 VARIABLE 0 ; GENERAL PURPOSE TEMPORARY

REG_MASK VARIABLE 0 ; MOVEM REGISTER MASK

PREFETCH_LOC VARIABLE 0 ; TELLS WHERE PREFETCH IS EXPECTED

REQUESTED_ADDRESS VARIABLE 0 ; ADDRESS WE ARE LOOKING FOR

TEMP_DATA VARIABLE 0 ; STORES UPPER BYTE OF 68008 INSTRUCTION
ABSOLUTE VARIABLE 0 ; VARIABLE THAT TELLS IF THE ADDRESS IS
 ; OFFSET OR ABSOLUTE DUE TO OVERFLOW
INT_VAL VARIABLE 0FFFFFH ; VARIABLE FOR INT VS CPU SPACE OPEREATIONS

**

ML2 CONSTANT 03H 2 LSB MASK
ML3 CONSTANT 07H 3 LSB MASK
ML4 CONSTANT 0FH 4 LSB MASK
ML8 CONSTANT 0FFH 8 LSB MASK
ML20 CONSTANT 00FFFFFH 20 LSB MASK
ML24 CONSTANT 0FFFFFFH 24 LSB MASK

INSTR_LINE CONSTANT 1 FLAG FOR INSTR LINE
NOT_INSTR_LINE CONSTANT 0 FLAG FOR NON-INSTR LINE

UNUSED_PREFETCH CONSTANT 1 TAG FOR PREFETCHED INSTR
OPERAND_USED CONSTANT 2 TAG FOR USED OPERANDS

FALSE CONSTANT 0
TRUE CONSTANT 1

BYTE CONSTANT 00B BYTE TRANSFER INDICATOR
WORD CONSTANT 01B WORD TRANSFER INDICATOR
LONG CONSTANT 10B LONG TRANSFER INDICATOR

TAG_COLUMN CONSTANT 9 COLUMN FOR TAG DISPLAY

68010 Inverse Assembler HP 10391B IAL Development Package
C-2 Reference Manual

STATUS_MASK CONSTANT 10111111B MASK 68010
STATUS_VALUE CONSTANT 10101001B VALUE 68010

SUPR_DATA ASCII "supr data"
SUPR_PROG ASCII "supr program"
USER_DATA ASCII "user data"
USER_PROG ASCII "user program"
READ ASCII "read"
WRITE ASCII "write"
TYPE_6800 ASCII " (6800)"
DMA ASCII "DMA"
FOUR_STAR ASCII "****"
COMMA ASCII ","
D ASCII "D"
A ASCII "A"
B ASCII "B"
W ASCII "W"
L ASCII "L"
NUM_SIGN ASCII "#"
OR_OP ASCII "OR"
AND_OP ASCII "AND"
SUB_OP ASCII "SUB"
EOR_OP ASCII "EOR"
ADD_OP ASCII "ADD"
CLR_OP ASCII "CLR"
MOVE_OP ASCII "MOVE"
SR ASCII "SR"
CCR ASCII "CCR"
USP ASCII "USP"
TWO_STAR ASCII "**"
S ASCII "S"
RIGHT_BRACKET ASCII "]"
R ASCII "R"
PERIOD ASCII "."
ILLEGAL ASCII "Illegal"

 SEARCH_LIMIT 34

**

BIN3_FMT FORMAT 3,BIN,3 3 BITS, BIN, 3 DIGITS
DEC1_FMT_3 FORMAT 3,DEC,1 3 BITS, DEC, 1 DIGIT
HEX1_FMT FORMAT 4,HEX,1 4 BITS, HEX, 1 DIGIT

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-3

HEX1_FMT_3 FORMAT 3,HEX,1 3 BITS, HEX, 1 DIGIT
HEX2_FMT FORMAT 8,HEX,2 8 BITS, HEX, 2 DIGITS
HEX2_FMT_5 FORMAT 5,HEX,2 5 BITS, HEX, 2 DIGITS
HEX4_FMT FORMAT 16,HEX,4 16 BITS, HEX, 4 DIGITS
HEX6_FMT FORMAT 24,HEX,6 24 BITS, HEX, 6 DIGITS
HEX8_FMT FORMAT 32,HEX,8 32 BITS, HEX, 8 DIGITS

**

 LABEL_TITLE ̂ 68010 Mnemoniĉ
 BASE_TITLE ̂ hex̂
 DEFAULT_WIDTH 31

 LOAD ML20
 STORE INT_VAL

INITIALIZE
 SET RETURN_FLAGS,INSTR_LINE PRESET TO INSTRUCTION LINE
 SET SR_ACCESS,FALSE INITIAL CONDITION, DONT ALLOW SR ACCESS
 SET DISASSEMBLY_BLOCK,FALSE INITIALLY NO INVERSE ASSEMBLY BLOCK

 LOAD INPUT_ADDRESS GET ADDRESS OF FIRST STATE PASSED
 STORE REQUESTED_ADDRESS SAVE THIS AS THE ADDRESS WE’RE LOOKING AT

 IF INPUT_ERROR <> 0 THEN GOTO DATA_ERROR

 LOAD STATUS_MASK ; GET PROGRAM READ STATUS MASK
 STORE QUALIFY_MASK ... AND SAVE AS INPUT QUALIFIER MASK
 LOAD STATUS_VALUE ; GET PROGRAM READ STATUS VALUE
 STORE QUALIFY_VALUE ... AND SAVE AS INPUT QUALIFIER VALUE

CHECK_INPUT_TAG
 LOAD INPUT_TAG GET THE CURRENT TAG VALUE
 IF 17,16 <> 0 THEN GOTO OPCODE_DECODE OK TO DISASSEMBLE

* ELSE ONLY DISPLAY STATUS INFORMATION

 LOAD INPUT_STATUS
 AND QUALIFY_MASK
 IF 7,0 = QUALIFY_VALUE THEN GOTO FLAGGED_AS_INSTR

**

68010 Inverse Assembler HP 10391B IAL Development Package
C-4 Reference Manual

DISPLAY_STATUS

 SET RETURN_FLAGS,NOT_INSTR_LINE DONT FLAG THIS LINE

FLAGGED_AS_INSTR
 POSITION ABS,3
 LOAD INPUT_DATA
 OUTPUT ACCUMULATOR,HEX4_FMT DISPLAY THE INPUT DATA

 POSITION REL,1
 LOAD INPUT_TAG
 IF 1,0 <> UNUSED_PREFETCH THEN GOTO NOT_PREFETCH
 OUTPUT "unused prefetch"
 RETURN

NOT_PREFETCH
 LOAD INPUT_STATUS
 IF 7,7 = 1 THEN GOTO NOT_DMA
 OUTPUT DMA
 RETURN

NOT_DMA
 CASE_OF 6,4
 CALL UNKNOWN
 OUTPUT USER_DATA
 OUTPUT USER_PROG
 CALL UNKNOWN
 CALL UNKNOWN
 OUTPUT SUPR_DATA
 OUTPUT SUPR_PROG
 CALL INT_ACK
 CASE_END
 IF INT = TRUE THEN GOTO NO_R_W_DISP INTERRUPT ACK IS ALWAYS READ
 POSITION REL,1
 CASE_OF 0,0
 OUTPUT WRITE
 OUTPUT READ
 CASE_END

NO_R_W_DISP
 CASE_OF 3,3
 OUTPUT TYPE_6800 INDICATE A 6800 CYCLE

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-5

 NOP NOTHING FOR NORMAL 68000 CYCLE
 CASE_END

* IF THE TRANSFER IS A BYTE TRANSFER THE UNDEFINED BYTE IS xxed OUT.
* UPPER AND LOWER DATA STROBE TELL WHICH BYTE OR BYTES ARE VALID.
* UPPER DATA STROBE IS INPUT ON STATUS BIT 2 AND LOWER DATA
* STROBE IS INPUT ON STATUS BIT 1.

 CASE_OF 2,1
 RETURN WORD XFER, NO DONT CARES
 POSITION ABS,5 POSITION TO xx THE LOWER BYTE
 POSITION ABS,3 POSITION TO xx THE UPPER BYTE
 RETURN UNDEFINED TRANSFER
 CASE_END
 OUTPUT "xx" OUTPUT THE DON’T CARES

 RETURN EXIT INVERSE ASSEMBLER

**

OPCODE_DECODE

 LOAD INPUT_TAG GET THE TAG FOR THIS STATE
 IF 1,0 = OPERAND_USED THEN GOTO DISPLAY_STATUS
 IF 1,0 = UNUSED_PREFETCH THEN GOTO DISPLAY_STATUS

 LOAD INPUT_STATUS GET THE STATUS OF THE INPUT
 AND QUALIFY_MASK GET ONLY THE DESIRED BITS FOR PROGRAM READ
 IF 7,0 <> QUALIFY_VALUE THEN GOTO DISPLAY_STATUS BRIF NOT OPCODE

 LOAD INPUT_DATA GET THE DATA THAT WAS READ

MEM_OPC_DEC
 LOAD INPUT_DATA GET THE DATA THAT WAS READ
 CASE_OF 15,12
 GOTO Bit_MOVEP_Imm
 GOTO MOVE_B_L_W
 GOTO MOVE_B_L_W
 GOTO MOVE_B_L_W
 GOTO Misc
 GOTO ADDQ_SUBQ_Scc_DBcc

68010 Inverse Assembler HP 10391B IAL Development Package
C-6 Reference Manual

 GOTO Bcc
 GOTO MOVEQ
 GOTO OR_DIV_BCD_AND_MUL_EXG
 GOTO Math_Extended
 GOTO UNIMPLEMENTED
 GOTO CMP_EOR
 GOTO OR_DIV_BCD_AND_MUL_EXG
 GOTO Math_Extended
 GOTO Shift_Rotate
 GOTO UNIMPLEMENTED
 CASE_END

**

Bit_MOVEP_Imm
 IF 8,8 = 1 THEN GOTO Dynamic_MOVEP
 CASE_OF 11,9
 OUTPUT OR_OP 0000 0000 XXXX XXXX
 OUTPUT AND_OP 0000 0010 XXXX XXXX
 OUTPUT SUB_OP 0000 0100 XXXX XXXX
 OUTPUT ADD_OP 0000 0110 XXXX XXXX
 GOTO Static 0000 1000 XXXX XXXX
 OUTPUT EOR_OP 0000 1010 XXXX XXXX
 OUTPUT "CMP" 0000 1100 XXXX XXXX
 GOTO MOVES 0000 1110 XXXX XXXX
 CASE_END
 OUTPUT "I" ALL OF THE ABOVE ARE IMMEDIATE
 CALL SHOW_SIZE DISPLAY THE SIZE INDICATOR
 CALL IMMEDIATE DISPLAY THE IMMEDIATE DATA
 OUTPUT COMMA SEPARATE OPERAND FIELDS

* NOW SET THE VARIABLE THAT ALLOWS/DISALLOWS EFFECTIVE ADDRESS ACCESS
* TO THE STATUS REGISTER

 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE BACK
 CASE_OF 11,9
 SET SR_ACCESS,TRUE ORI CAN ACCESS STATUS REGISTER
 SET SR_ACCESS,TRUE ANDI CAN ACCESS STATUS REGISTER
 SET SR_ACCESS,FALSE SUBI CANNOT ACCESS STATUS REGISTER
 SET SR_ACCESS,FALSE ADDI CANNOT ACCESS STATUS REGISTER
 NOP CANT GET HERE (BIT STATIC INSTR)
 SET SR_ACCESS,TRUE EORI CAN ACCESS STATUS REGISTER

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-7

 SET SR_ACCESS,FALSE CMPI CANNOT ACCESS STATUS REGISTER
 NOP CANT GET HERE (ILLEGAL OPCODE)
 CASE_END
 CALL EA_DISP DISPLAY THE EFFECTIVE ADDRESS
 IF SR_ACCESS = FALSE THEN RETURN CANNOT ACCESS SR/CCR
 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE
 IF 5,0 <> 111100B THEN RETURN COULD, BUT DIDNT ACCESS SR/CCR
 RETURN

**

MOVES
 OUTPUT MOVE_OP
 OUTPUT S
 CALL SHOW_SIZE
 CALL READ_NEXT_OPERAND
 IF INPUT_ERROR <>0 THEN GOTO INCOMPLETE_OPCODE
 LOAD INPUT_DATA
 STORE TEMP_DATA
 CASE_OF 11,11
 CALL EA_DISP
 CALL REG_DISP
 CASE_END
 OUTPUT COMMA
 LOAD TEMP_DATA
 CASE_OF 11,11
 CALL REG_DISP
 CALL EA_DISP
 CASE_END
 RETURN

REG_DISP
 LOAD TEMP_DATA
 CASE_OF 15,15
 OUTPUT D
 OUTPUT A
 CASE_END
 AND 07000H
 ROTATE RIGHT,12
 OUTPUT ACCUMULATOR,DEC1_FMT_3
 RETURN

**

68010 Inverse Assembler HP 10391B IAL Development Package
C-8 Reference Manual

Dynamic_MOVEP
 IF 5,3 = 001B THEN GOTO MOVEP
 CALL BIT_MNEMONIC DISPLAY THE BIT MANIPULATION INSTR
 POSITION ABS,TAG_COLUMN MOVE OVER TO OPERAND FIELD
 CALL DATA_REG_11_9 DISPLAY THE REG NUMBER (BITS 11 - 9)
 OUTPUT COMMA
 GOTO EA_DISP DISPLAY THE EFFECTIVE ADDRESS

**

BIT_MNEMONIC

* DISPLAY THE BIT MANIPULATION INSTRUCTION (DYNAMIC/STATIC)

 OUTPUT B
 CASE_OF 7,6
 OUTPUT "TST"
 OUTPUT "CHG"
 OUTPUT CLR_OP
 OUTPUT "SET"
 CASE_END
 OUTPUT PERIOD
 IF 5,3 = 000B THEN GOTO LONG_BIT BRIF DYNAMIC BIT
 OUTPUT B
 SET SIZE_FIELD,BYTE INDICATE BYTE SIZE TRANSFER
 RETURN
LONG_BIT
 OUTPUT L
 SET SIZE_FIELD,LONG INDICATE LONG SIZE TRANSFER
 RETURN

**

MOVEP
 OUTPUT MOVE_OP
 OUTPUT "P." DISPLAY THE MNEMONIC
 CASE_OF 6,6
 OUTPUT W SIZE = WORD
 OUTPUT L SIZE = LONG
 CASE_END

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-9

 CASE_OF 6,6
 SET SIZE_FIELD,WORD SIZE = WORD
 SET SIZE_FIELD,LONG SIZE = LONG
 CASE_END
 SET MODE_FIELD,101B SET TO ADDR INDIRECT + OFFSET MODE
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND FIELD
 CASE_OF 7,7
 CALL EA_DISP_MODE_SET DISPLAY THE MEMORY SOURCE LOCATION
 CALL DATA_REG_11_9 DISPLAY THE DATA REG SOURCE
 CASE_END
 LOAD INITIAL_DATA GET BACK THE ORIGINAL OPCODE
 OUTPUT COMMA
 CASE_OF 7,7
 CALL DATA_REG_11_9 DISPLAY THE DATA REG DESTINATION
 CALL EA_DISP_MODE_SET DISPLAY THE MEMORY DESTINATION
 CASE_END
 RETURN

**

Static
 CALL BIT_MNEMONIC DISPLAY THE BIT MANIPULATION INSTR
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND FIELD
 OUTPUT NUM_SIGN INDICATE IMMEDIATE DATA
 CALL READ_NEXT_OPERAND GET THE BIT NUMBER OPERAND
 IF INPUT_ERROR = 0 THEN GOTO Static_OK
 LOAD SIZE_FIELD GET THE SIZE INDICATOR
 CASE_OF 1,1
 OUTPUT "*" 0X = BYTE ie MODULO 8 BIT NUMBER
 OUTPUT TWO_STAR 1X = LONG ie MODULO 32 BIT NUMBER
 CASE_END
 GOTO SNODEA Static Not Ok Display Effective Address
Static_OK
 LOAD INPUT_DATA GET THE BIT NUMBER SPECIFIER
 CASE_OF SIZE_FIELD
 OUTPUT ACCUMULATOR,HEX1_FMT_3 DISPLAY THE 3 BIT VALUE
 NOP SHOULDN’T EVER GET HERE
 OUTPUT ACCUMULATOR,HEX2_FMT_5 DISPLAY THE 5 BIT VALUE
 NOP
 CASE_END
SNODEA

68010 Inverse Assembler HP 10391B IAL Development Package
C-10 Reference Manual

 OUTPUT COMMA
 GOTO EA_DISP DISPLAY THE EFFECTIVE ADDRESS

**

MOVE_B_L_W
 OUTPUT MOVE_OP
 IF 8,6 = 001B THEN OUTPUT A
 OUTPUT PERIOD

* THE CONVENTIONAL SIZE ROUTINE (SHOW_SIZE) CANNOT BE USED BECAUSE
* THE MOVE INSTRUCTION USES A DIFFERENT SIZE ENCODING

 CASE_OF 13,12 SIZE FIELD
 NOP SHOULDNT EVER GET HERE
 OUTPUT B BYTE TRANSFER
 OUTPUT L LONG TRANSFER
 OUTPUT W WORD TRANSFER
 CASE_END
 CASE_OF 13,12 SIZE FIELD
 NOP SHOULDNT EVER GET HERE
 SET SIZE_FIELD,BYTE BYTE TRANSFER
 SET SIZE_FIELD,LONG LONG TRANSFER
 SET SIZE_FIELD,WORD WORD TRANSFER
 CASE_END

 POSITION ABS,TAG_COLUMN POSITION AT THE TAG DISPLAY POSITION
 CALL SOURCE_EA DISPLAY THE DESTINATION EFFECTIVE ADDR
 OUTPUT COMMA
 LOAD INITIAL_DATA GET THE OPCODE BACK AGAIN
 GOTO DESTINATION_EA DISPLAY THE SOURCE EFFECTIVE ADDRESS

**

Misc
 IF 8,7 = 10B THEN GOTO ILLEGAL_OPCODE
 IF 8,8 = 1 THEN GOTO CHK_LEA
 IF 11,11 = 0 THEN GOTO NEGX_CLR_NOT_MOVE
 CASE_OF 10,9
 GOTO NBCD_AND_MIX 0100 1000 XXXX XXXX
 GOTO TST_TAS 0100 1010 XXXX XXXX
 GOTO MOVEM_TO_REG 0100 1100 XXXX XXXX

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-11

 GOTO MISC_JSR_JMP 0100 1110 XXXX XXXX
 CASE_END
 RETURN THIS RETURN CANT HAPPEN

NBCD_AND_MIX
 CASE_OF 7,6
 OUTPUT "NBCD.B" 0100 1000 00XX XXXX
 GOTO PEA_SWAP 0100 1000 01XX XXXX
 GOTO MOVEM_EXT 0100 1000 10XX XXXX
 GOTO MOVEM_EXT 0100 1000 11XX XXXX
 CASE_END
 POSITION ABS,TAG_COLUMN MOVE OVER TO TAG FIELD
 GOTO EA_DISP DISPLAY THE EFFECTIVE ADDRESS

PEA_SWAP
 SET TEMP1,0 PRESET TO SWAP INSTRUCTION
 IF 5,3 <> 000B THEN SET TEMP1,1 SET TO PEA INSTRUCTION
 CASE_OF TEMP1
 OUTPUT "SWAP.W"
 OUTPUT "PEA.L"
 CASE_END
 POSITION ABS,TAG_COLUMN
 CASE_OF TEMP1
 CALL DATA_REG_2_0 SWAP INSTRUCTION
 CALL EA_DISP PEA INSTRUCTION
 CASE_END
 RETURN

CHK_LEA
 CASE_OF 6,6
 OUTPUT "CHK.W" 0100 XXX1 10XX XXXX
 OUTPUT "LEA.L" 0100 XXX1 11XX XXXX
 CASE_END
 POSITION ABS,TAG_COLUMN MOVE OVER TO OPERAND FIELD
 CALL EA_DISP DISPLAY THE EFFECTIVE ADDRESS
 LOAD INITIAL_DATA RECOVER THE ORIGINAL OPCODE
 OUTPUT COMMA
 CASE_OF 6,6
 CALL DATA_REG_11_9 BOUND IS IN DATA REGISTER
 CALL ADDR_REG_11_9 EFFECTIVE ADDRESS GOES TO ADDR REG
 CASE_END
 RETURN

68010 Inverse Assembler HP 10391B IAL Development Package
C-12 Reference Manual

NEGX_CLR_NOT_MOVE
 IF 7,6 = 11B THEN GOTO MOVE_SR_CCR 0100 0XX0 11XX XXXX
 CASE_OF 10,9
 OUTPUT "NEGX"
 OUTPUT CLR_OP
 OUTPUT "NEG"
 OUTPUT "NOT"
 CASE_END
 CALL SHOW_SIZE DISPLAY THE OPERATION SIZE
 CALL EA_DISP DISPLAY THE EFFECTIVE ADDRESS
 RETURN

MOVE_SR_CCR
 OUTPUT MOVE_OP
 OUTPUT PERIOD
 CASE_OF 10,9
 OUTPUT W
 OUTPUT W
 OUTPUT B
 OUTPUT W
 CASE_END
 CASE_OF 10,9
 SET SIZE_FIELD,WORD
 SET SIZE_FIELD,WORD CANT GET HERE FOR 68000/08
 SET SIZE_FIELD,BYTE
 SET SIZE_FIELD,WORD
 CASE_END
 POSITION ABS,TAG_COLUMN
 CASE_OF 10,9
 OUTPUT SR
 OUTPUT CCR ILLEGAL INSTRUCTION, CANT GET HERE FOR 68000/08
 CALL EA_DISP DISPLAY THE SOURCE ADDRESS
 CALL EA_DISP DISPLAY THE SOURCE ADDRESS
 CASE_END
 OUTPUT COMMA
 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE BACK
 CASE_OF 10,9
 CALL EA_DISP DISPLAY THE DESTINATION ADDRESS
 CALL EA_DISP ILLEGAL INSTRUCTION, CANT GET HERE FOR 68000/08
 OUTPUT CCR
 OUTPUT SR
 CASE_END

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-13

 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE BACK
 IF 10,9 < 2 THEN RETURN NO UNUSED PREFETCH TO MARK

*
* NOW, LOOK AT THE EFFECTIVE ADDRESS MODE FIELD TO DETERMINE THE NUMBER
* OF PROGRAM READ STATES REQUIRED FOR THIS INSTRUCTION. THIS VALUE PLUS
* ONE WILL THEN POINT TO THE PROPER LOCATION FOR THE UNUSED PREFETCH
* STATE.
*

 CASE_OF 5,3
 SET PREFETCH_LOC,+1 DATA REGISTER DIRECT
 NOP ADDRESS REGISTER DIRECT (**ILLEGAL**)
 SET PREFETCH_LOC,+1 ADDRESS REGISTER INDIRECT
 SET PREFETCH_LOC,+1 ADDRESS REGISTER INDIRECT POST-INCREMENT
 SET PREFETCH_LOC,+1 ADDRESS REGISTER INDIRECT PRE-DECREMENT
 SET PREFETCH_LOC,+2 ADDRESS REGISTER INDIRECT W/DISPLACEMENT
 SET PREFETCH_LOC,+2 ADDR REG IND W/DISPLACEMENT AND INDEX
 CALL LOOK_AT_REG_FIELD FOR MODE = 7, REG FIELD MUST BE EXAMINED
 CASE_END
 GOTO MARK_PREFETCH MARK THE PREFETCH

LOOK_AT_REG_FIELD
 CASE_OF 2,0 LOOKING NOW AT THE REG FIELD
 SET PREFETCH_LOC,+2 ABSOLUTE ADDRESS (SHORT)
 SET PREFETCH_LOC,+3 ABSOLUTE ADDRESS (LONG)
 SET PREFETCH_LOC,+2 PC RELATIVE W/DISPLACEMENT
 SET PREFETCH_LOC,+2 PC RELATIVE W/DISPLACEMENT AND INDEX
 SET PREFETCH_LOC,+2 IMMEDIATE DATA
 CASE_END
 RETURN

MOVEM_EXT
 IF 5,3 = 000B THEN GOTO EXT
MOVEM
 OUTPUT MOVE_OP
 OUTPUT "M."
 CASE_OF 6,6
 OUTPUT W
 OUTPUT L
 CASE_END
 CALL READ_NEXT_OPERAND READ THE MASK WORD
 STORE REG_MASK SAVE THE MASK WORD
 IF INPUT_ERROR <> 0 THEN SET REG_MASK,0

68010 Inverse Assembler HP 10391B IAL Development Package
C-14 Reference Manual

 POSITION ABS,TAG_COLUMN
 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE BACK
 CASE_OF 10,10
 CALL MOVEM_MASK
 CALL EA_DISP
 CASE_END
 OUTPUT COMMA
 LOAD INITIAL_DATA GET BACK THE ORIGINAL OPCODE
 CASE_OF 10,10
 CALL EA_DISP
 CALL MOVEM_MASK
 CASE_END
 RETURN

MOVEM_MASK
 OUTPUT "rm="
 LOAD REG_MASK
 IF 15,0 <> 0 THEN GOTO MASK_FOUND
 OUTPUT FOUR_STAR IF NO MASK WAS FOUND
 RETURN
MASK_FOUND
 OUTPUT ACCUMULATOR,HEX4_FMT
 RETURN

EXT
 OUTPUT "EXT."
 CASE_OF 6,6
 OUTPUT W
 OUTPUT L
 CASE_END
 POSITION ABS,TAG_COLUMN
 GOTO DATA_REG_2_0

TST_TAS
 IF 7,6 <> 11B THEN GOTO TST
 OUTPUT "TAS.B"
 GOTO MNEMONIC_DISPLAYED
TST
 OUTPUT "TST"
 CALL SHOW_SIZE

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-15

MNEMONIC_DISPLAYED
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND FIELD
 GOTO EA_DISP DISPLAY THE EFFECTIVE ADDRESS

MOVEM_TO_REG
 IF 7,7 = 0 THEN GOTO ILLEGAL_OPCODE
 GOTO MOVEM

MISC_JSR_JMP
 CASE_OF 8,6
 GOTO ILLEGAL_OPCODE
 GOTO TRAP_MIX
 OUTPUT "JSR"
 OUTPUT "JMP"
 CASE_END
 POSITION ABS,TAG_COLUMN
 GOTO EA_DISP
* CALL MARK_PREFETCH DUMP THE UNUSED PREFETCH

TRAP_MIX
 CASE_OF 5,4
 GOTO TRAP
 GOTO LINK_UNLK
 GOTO MOVE_USP
 NOP
 CASE_END
 IF 5,3 = 111B THEN GOTO MOVEC
 CASE_OF 2,0
 OUTPUT "RESET"
 OUTPUT "NOP"
 OUTPUT "STOP"
 OUTPUT "RTE"
 GOTO RTD
 OUTPUT "RTS"
 OUTPUT "TRAPV"
 OUTPUT "RTR"
 CASE_END
 IF 2,0 <> 2 THEN GOTO NO_OPERAND
 POSITION ABS,TAG_COLUMN
 OUTPUT NUM_SIGN
 CALL READ_NEXT_OPERAND
 IF INPUT_ERROR <>0 THEN GOTO WORD_ERROR

68010 Inverse Assembler HP 10391B IAL Development Package
C-16 Reference Manual

STOP_OK
 OUTPUT ACCUMULATOR,HEX4_FMT
 RETURN

RTD
 OUTPUT "RTD"
 POSITION ABS,TAG_COLUMN
 OUTPUT NUM_SIGN
 CALL READ_NEXT_OPERAND
 IF INPUT_ERROR <>0 THEN GOTO WORD_ERROR
 LOAD INPUT_DATA
 OUTPUT ACCUMULATOR,HEX4_FMT
 RETURN

MOVEC
 OUTPUT MOVE_OP
 OUTPUT "C.L"
 POSITION ABS,TAG_COLUMN
 CALL READ_NEXT_OPERAND
 IF INPUT_ERROR <>0 THEN GOTO INCOMPLETE_OPCODE
 LOAD INPUT_DATA
 STORE TEMP_DATA
 LOAD INITIAL_DATA
 CASE_OF 0,0
 CALL DISP_CONTROL_REG
 CALL REG_DISP
 CASE_END
 OUTPUT COMMA
 LOAD INITIAL_DATA
 CASE_OF 0,0
 CALL REG_DISP
 CALL DISP_CONTROL_REG
 CASE_END
 RETURN

DISP_CONTROL_REG
 LOAD TEMP_DATA
 IF 11,0=0 THEN OUTPUT "SFC"
 IF 11,0=1 THEN OUTPUT "DFC"
 IF 11,0=800H THEN OUTPUT USP
 IF 11,0=801H THEN OUTPUT "VBR"
 IF 10,1<> 0 THEN GOTO ILLEGAL_OPERAND
 RETURN

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-17

NO_OPERAND
 IF 2,0 < 3 THEN RETURN NO PREFETCH TO BE MARKED
 IF 2,0 = 6 THEN RETURN CANT MARK PREFETCH FOR TRAPV
 SET PREFETCH_LOC,+1
 GOTO MARK_PREFETCH

TRAP
 OUTPUT "TRAP"
 POSITION ABS,TAG_COLUMN
 OUTPUT NUM_SIGN
 AND ML4 VECTOR NUMBER IN LOWER 4 BITS ONLY
 OUTPUT ACCUMULATOR,HEX1_FMT
 SET PREFETCH_LOC,+1
 GOTO MARK_PREFETCH DUMP UNUSED PREFETCH

LINK_UNLK
 CASE_OF 3,3
 OUTPUT "LINK"
 OUTPUT "UNLK"
 CASE_END
 POSITION ABS,TAG_COLUMN
 CALL ADDR_REG_2_0
 IF 3,3 = 1 THEN RETURN
 OUTPUT ",#"
 CALL READ_NEXT_OPERAND
 IF INPUT_ERROR <> 0 THEN GOTO WORD_ERROR
LINK_UNLK_OK
 OUTPUT ACCUMULATOR,HEX4_FMT DISPLAY THE 16 BIT DISPLACEMENT
 RETURN

MOVE_USP
 OUTPUT MOVE_OP
 OUTPUT ".L"
 POSITION ABS,TAG_COLUMN
 CASE_OF 3,3
 CALL ADDR_REG_2_0
 OUTPUT USP
 CASE_END
 OUTPUT COMMA

68010 Inverse Assembler HP 10391B IAL Development Package
C-18 Reference Manual

 CASE_OF 3,3
 OUTPUT USP
 CALL ADDR_REG_2_0
 CASE_END
 RETURN

**

ADDQ_SUBQ_Scc_DBcc
 IF 7,6 <> 11B THEN GOTO ADDQ_SUBQ ADDQ & SUBQ INSTRUCTIONS
 IF 5,3 = 001B THEN GOTO DBcc
 OUTPUT S
 GOTO Scc_DBcc

DBcc

 OUTPUT "DB"

Scc_DBcc
 CALL CONDITION_CODE DISPLAY THE CONDITION CODE
 IF 5,3 = 001B THEN GOTO DBcc_2
 OUTPUT ".B"
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE TAG LOCATION
 GOTO EA_DISP

DBcc_2
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE TAG LOCATION
 OUTPUT D A DATA REGISTER IS BEING USED
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY THE REGISTER NUMBER
 OUTPUT COMMA
 CALL READ_NEXT_OPERAND
 IF INPUT_ERROR <> 0 THEN GOTO WORD_ERROR
DBcc_DISP_OK
 IF 15,15 = 1 THEN INCLUSIVE_OR 0FF0000H SIGN EXTENSION
 ADD INPUT_ADDRESS ADD PC OF DISPLACEMENT WORD TO DISPLACEMENT
ADDRESS_OUTPUT
 AND ML24 ONLY INTERESTED IN LOWER 24 BITS
 IF_NOT_MAPPED THEN OUTPUT ACCUMULATOR,HEX6_FMT
 RETURN

**

ADDQ_SUBQ
 CASE_OF 8,8

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-19

 OUTPUT "ADDQ"
 OUTPUT "SUBQ"
 CASE_END
 CALL SHOW_SIZE DISPLAY THE SIZE OF THE OPERATION
 CALL IMM_DATA_11_9 DISPLAY THE 3 BIT IMMEDIATE DATA
 OUTPUT COMMA
 GOTO EA_DISP DISPLAY THE EFFECTIVE ADDRESS

**

Bcc
 OUTPUT B
 CALL CONDITION_CODE DISPLAY THE APPLICABLE CONDITION

 IF 7,0 <> 0 THEN GOTO EIGHT_BIT BRIF AN 8 BIT DISPLACEMENT VALUE
 OUTPUT ".W" DISPLACEMENT WAS 16 BIT WORD
 SET SIZE_FIELD,WORD OPERATION SIZE = WORD
 CALL READ_NEXT_OPERAND GET THE 16 BIT DISPLACEMENT VALUE
 IF 15,15 = 1 THEN INCLUSIVE_OR 0FF0000H SIGN EXTENSION
 IF INPUT_ERROR = 0 THEN GOTO DISP_OK
 OUTPUT "********"
 RETURN

EIGHT_BIT
 OUTPUT ".B" DISPLACEMENT WAS 8 BIT BYTE
 SET SIZE_FIELD,BYTE OPERATION SIZE = BYTE
 AND ML8 INTERESTED IN LOWER 8 BITS ONLY
 IF 7,7 = 1 THEN INCLUSIVE_OR 0FFFF00H EXTEND THE SIGN

DISP_OK
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND FIELD
 ADD INPUT_ADDRESS ADD ADDRESS OF DISPLACEMENT WORD
 AND ML24 ONLY INTERESTED IN LOWER 24 BITS
 IF SIZE_FIELD = BYTE THEN ADD 2 PC POINTING AHEAD 2 LOCATIONS
 CALL ADDRESS_OUTPUT
 LOAD INITIAL_DATA RELOAD THE INITIAL OPCODE
 IF 15,9 <> 0110000B THEN RETURN BRIF NOT BRA OR BSR
 IF 7,0 = 0 THEN RETURN NO PREFETCH IF BSR.W OR BRA.W
 SET PREFETCH_LOC,+1
 GOTO MARK_PREFETCH

**

68010 Inverse Assembler HP 10391B IAL Development Package
C-20 Reference Manual

MOVEQ
 OUTPUT MOVE_OP
 OUTPUT "Q.L"
 POSITION ABS,TAG_COLUMN MOVE OVER TO TAG COLUMN
 AND ML8 GET THE 8 BIT DATA FIELD
 IF 7,7 = 1 THEN INCLUSIVE_OR 0FFFFFF00H SIGN EXTEND TO 32 BITS
 OUTPUT NUM_SIGN IMMEDIATE DATA INDICATOR
 OUTPUT ACCUMULATOR,HEX8_FMT DISPLAY THE 32 BIT IMMEDIATE VALUE
 OUTPUT COMMA
 GOTO DATA_REG_11_9 DISPLAY THE DATA REGISTER IN 11 THRU 9

**

Math_Extended
 CASE_OF 14,14
 OUTPUT SUB_OP
 OUTPUT ADD_OP
 CASE_END
 IF 7,6 = 11B THEN GOTO SUBA_ADDA
 IF 8,8 <> 1 THEN GOTO NOT_EXTENDED
 IF 5,4 = 00B THEN GOTO EXTENDED_MATH

NOT_EXTENDED
 CALL SHOW_SIZE DISPLAY THE SIZE OF THE OPERATION
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND FIELD
 CASE_OF 8,8
 CALL EA_DISP DISPLAY THE SOURCE EFFECTIVE ADDRESS
 CALL DATA_REG_11_9 DISPLAY THE SOURCE DATA REGISTER
 CASE_END
 OUTPUT COMMA
 LOAD INITIAL_DATA GET BACK THE ORIGINAL OPCODE
 CASE_OF 8,8
 CALL DATA_REG_11_9 DISPLAY THE DESTINATION DATA REGISTER
 CALL EA_DISP DISPLAY THE DESTINATION EFFECTIVE ADDR
 CASE_END
 RETURN

SUBA_ADDA
 OUTPUT "A."
A_ADDRESSING
 CASE_OF 8,8
 OUTPUT W

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-21

 OUTPUT L
 CASE_END
 CASE_OF 8,8
 SET SIZE_FIELD,WORD WORD OPERAND
 SET SIZE_FIELD,LONG LONG OPERAND
 CASE_END
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND FIELD
 CALL EA_DISP DISPLAY THE SOURCE ADDRESS
 OUTPUT COMMA
 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE
 GOTO ADDR_REG_11_9 DISPLAY THE ADDRESS DESTINATION ADDR

**

CMP_EOR
 IF 7,6 = 11B THEN GOTO CMPA
 IF 8,8 = 1 THEN GOTO CMPM_EOR
 OUTPUT "CMP"
 CALL SHOW_SIZE DISPLAY THE OPERATION SIZE
 CALL EA_DISP DISPLAY THE EA SOURCE LOCATION
 OUTPUT COMMA
 GOTO DATA_REG_11_9 DISPLAY THE DATA REGISTER NAME
CMPA
 OUTPUT "CMPA."
 GOTO A_ADDRESSING

CMPM_EOR
 IF 5,3 <> 001B THEN GOTO EOR
 OUTPUT "CMPM"
 CALL SHOW_SIZE DISPLAY THE OPERATION SIZE
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND DISPLAY FIELD
 OUTPUT "[xx]+,[xx]+" DISPLAY OPERAND (xx WILL BE BACKFILLED)
 POSITION REL,-10 MOVE BACK OVER TO SRC REG # FIELD
 CALL ADDR_REG_2_0 DISPLAY THE 3 BIT REGISTER NUMBER
 POSITION REL,+4 MOVE OVER TO THE DEST REG FIELD
 CALL ADDR_REG_11_9 DISPLAY THE 3 BIT ADDRESS REGISTER NAME
 POSITION REL,+2 MOVE TO THE END OF THE OPERAND
 RETURN

EOR
 OUTPUT EOR_OP
 CALL SHOW_SIZE DISPLAY THE OPERATION SIZE

68010 Inverse Assembler HP 10391B IAL Development Package
C-22 Reference Manual

 CALL DATA_REG_11_9 DISPLAY THE SOURCE DATA REGISTER
 OUTPUT COMMA
 GOTO EA_DISP DISPLAY THE DESTINATION EFFECTIVE ADDR

**

OR_DIV_BCD_AND_MUL_EXG

 IF 7,6 = 11B THEN GOTO DIV_MUL_U_S
 IF 14,14 = 0 THEN GOTO NOT_EXG
 IF 8,4 = 10100B THEN GOTO EXG
 IF 8,4 = 11000B THEN GOTO EXG
NOT_EXG
 IF 8,4 = 10000B THEN GOTO SBCD_ABCD
 CASE_OF 14,14
 OUTPUT OR_OP
 OUTPUT AND_OP
 CASE_END
 GOTO NOT_EXTENDED

DIV_MUL_U_S
 CASE_OF 14,14
 OUTPUT "DIV"
 OUTPUT "MUL"
 CASE_END
 CASE_OF 8,8
 OUTPUT "U" UNSIGNED DIVIDE
 OUTPUT S SIGNED DIVIDE
 CASE_END
 OUTPUT ".W"
 POSITION ABS,TAG_COLUMN MOVE OVER TO TAG FIELD
 CALL EA_DISP DISPLAY THE EFFECTIVE ADDRESS
 OUTPUT COMMA
 GOTO DATA_REG_11_9 DISPLAY THE DATA REGISTER IN BITS 11-9

SBCD_ABCD
 CASE_OF 14,14
 OUTPUT S
 OUTPUT A
 CASE_END
 OUTPUT "BCD.B"
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE OPERAND FIELD

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-23

 IF 3,3 = 0 THEN GOTO REG_TO_REG
 OUTPUT "-["
 CALL ADDR_REG_2_0 DISPLAY THE SOURCE ADDR REGISTER
 OUTPUT "],-["
 CALL ADDR_REG_11_9 DISPLAY THE DESTINATION ADDR REGISTER
 OUTPUT RIGHT_BRACKET
 RETURN

REG_TO_REG
 CALL DATA_REG_2_0 DISPLAY THE SOURCE DATA REGISTER
 OUTPUT COMMA
 GOTO DATA_REG_11_9 DISPLAY THE DESTINATION REGISTER

EXG
 OUTPUT "EXG.L"
 POSITION ABS,TAG_COLUMN
 IF 7,3 = 01000B THEN SET TEMP1,0 DATA REGISTER EXG
 IF 7,3 = 01001B THEN SET TEMP1,1 ADDR REGISTER EXG
 IF 7,3 = 10001B THEN SET TEMP1,2 ADDR/DATA REGISTER EXG
 CASE_OF TEMP1
 CALL DATA_REG_11_9 DISPLAY THE FIRST DATA REGISTER
 CALL ADDR_REG_11_9 DISPLAY THE FIRST ADDR REGISTER
 CALL DATA_REG_11_9 DISPLAY THE DATA REGISTER
 NOP CANT GET HERE
 CASE_END
 OUTPUT COMMA
 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE BACK
 CASE_OF TEMP1
 CALL DATA_REG_2_0 DISPLAY THE SECOND DATA REGISTER
 CALL ADDR_REG_2_0 DISPLAY THE SECOND ADDR REGISTER
 CALL ADDR_REG_2_0 DISPLAY THE ADDRESS REGISTER
 NOP CANT GET HERE
 CASE_END
 RETURN

**

Shift_Rotate
 IF 7,6 = 11B THEN GOTO Memory_Shift
 CASE_OF 4,3 DISPLAY THE TYPE OF SHIFT
 OUTPUT "AS"
 OUTPUT "LS"

68010 Inverse Assembler HP 10391B IAL Development Package
C-24 Reference Manual

 OUTPUT "ROX"
 OUTPUT "RO"
 CASE_END
 CASE_OF 8,8 DISPLAY THE DIRECTION OF THE SHIFT
 OUTPUT R
 OUTPUT L
 CASE_END
 CALL SHOW_SIZE DISPLAY THE OPERATION SIZE (B,L,W)

 IF 5,5 = 1 THEN GOTO REG_COUNT
 CALL IMM_DATA_11_9 DISPLAY THE IMMEDIATE DATA
 GOTO COUNT_DISPLAYED

REG_COUNT
 CALL DATA_REG_11_9 DISPLAY THE DATA REG IN BITS 11-9

COUNT_DISPLAYED
 OUTPUT COMMA
 GOTO DATA_REG_2_0 DISPLAY THE SELECTED DATA REGISTER

**

Memory_Shift
 CASE_OF 10,9 DISPLAY THE TYPE OF SHIFT
 OUTPUT "AS"
 OUTPUT "LS"
 OUTPUT "ROX"
 OUTPUT "RO"
 CASE_END
 CASE_OF 8,8 DISPLAY THE DIRECTION OF THE SHIFT
 OUTPUT R
 OUTPUT L
 CASE_END
 OUTPUT ".W" WORD OPERATIONS ONLY
 SET SIZE_FIELD,WORD SET OPERATION SIZE TO WORD
 POSITION ABS,TAG_COLUMN MOVE OVER TO THE TAG DISPLAY FIELD
 GOTO EA_DISP DISPLAY THE EFFECTIVE ADDRESS

**

UNIMPLEMENTED
 OUTPUT "Unimplemented Instruction:"

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-25

 OUTPUT ACCUMULATOR,HEX4_FMT
 SET PREFETCH_LOC,+1 RELATIVE POSITION OF EXPECTED PREFETCH
 GOTO MARK_PREFETCH DUMP THE UNUSED PREFETCH

**

* 68000 INVERSE ASSEMBLER UTILITY ROUTINES

**

EA_DISP

* DISPLAY AN EFFECTIVE ADDRESS

SOURCE_EA
 SET EA_TYPE,1 INDICATE A "NORMAL" LOCATION EA
 GOTO EA_TYPE_SET
DESTINATION_EA
 SET EA_TYPE,0 INDICATE A "SPECIAL" LOCATION EA

EA_TYPE_SET
 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE
 CASE_OF EA_TYPE
 ROTATE RIGHT,6 MOVE MODE FIELD TO LSB (SPECIAL)
 ROTATE RIGHT,3 MOVE MODE FIELD TO LSB (NORMAL)
 CASE_END
 AND ML3 GET THE LOWER THREE BITS
 STORE MODE_FIELD SAVE THE MODE FIELD

 LOAD INITIAL_DATA GET THE ORIGINALLY INPUT OPCODE
 CASE_OF EA_TYPE
 ROTATE RIGHT,9 MOVE REGISTER FIELD TO LSB (SPECIAL)
 NOP NO MOVE REQUIRED (NORMAL)
 CASE_END

EA_DISP_MODE_SET

* ENTER HERE IF THE MODE HAS BEEN PRESET. THIS ASSUMES THE REGISTER
* NUMBER TO BE IN THE LOWER 3 BITS.

68010 Inverse Assembler HP 10391B IAL Development Package
C-26 Reference Manual

 AND ML3 GET THE LOWER 3 BITS
 STORE REG_FIELD SAVE THE REGISTER FIELD

 CASE_OF MODE_FIELD
 OUTPUT D DATA REGISTER DIRECT
 OUTPUT A ADDR REGISTER DIRECT
 OUTPUT "[A" ADDR REGISTER INDIRECT
 OUTPUT "[A" ADDR REGISTER INDIRECT W/POSTINCREMENT
 OUTPUT "-[A" ADDR REGISTER INDIRECT W/PREDECREMENT
 GOTO DISP16 ADDR REGISTER INDIRECT W/DISPLACEMENT
 GOTO DISP8_INDEX ADDR REG INDIRECT W/DISPLACEMENT&INDEX
 GOTO SPECIAL SPECIAL ADDRESSING MODES
 CASE_END

 LOAD REG_FIELD GET THE REGISTER FIELD
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY THE SELECTED REGISTER NUMBER

 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE BACK
 CASE_OF MODE_FIELD
 RETURN DATA REGISTER DIRECT
 RETURN ADDRESS REGISTER DIRECT
 OUTPUT RIGHT_BRACKET ADDRESS REGISTER INDIRECT
 OUTPUT "]+" ADDR REGISTER INDIRECT W/POSTINCREMENT
 OUTPUT RIGHT_BRACKET ADDR REGISTER INDIRECT W/PREDECREMENT
 NOP SHOULDNT EVER GET HERE
 NOP SHOULDNT EVER GET HERE
 NOP SHOULDNT EVER GET HERE
 CASE_END
 RETURN

**

DISP16

* 16 BIT DISPLACEMENT MODE

 CALL DISP_NEXT_WORD DISPLAY THE 16 BIT OFFSET VALUE
 OUTPUT "[A"
 LOAD REG_FIELD GET THE REGISTER INDICATED
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY THE SELECTED REGISTER
 OUTPUT RIGHT_BRACKET

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-27

 LOAD INITIAL_DATA GET THE ORIGINAL OPCODE BACK
 RETURN

**

DISP8_INDEX

* 8 BIT DISPLACEMENT AND INDEX MODE

 CALL READ_NEXT_OPERAND GET THE EXTENSION WORD

 IF INPUT_ERROR = 0 THEN GOTO DISP8_OK
 OUTPUT "**[A" ADDRESS REG WILL BE BACKFILLED
 LOAD REG_FIELD GET THE ADDRESS REGISTER NUMBER
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY REG #
 OUTPUT ",**.*]"
 RETURN

DISP8_OK
 AND ML8 GET THE 8 BIT DISPLACEMENT
 OUTPUT ACCUMULATOR,HEX2_FMT DISPLAY THE 8 BIT DISPLACEMENT
 OUTPUT "["
 LOAD INPUT_DATA GET THE ORIGINAL INPUT DATA BACK
 OUTPUT A
 LOAD REG_FIELD GET THE ADDRESS REGISTER NUMBER
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY THE ADDRESS REGISTER NUMBER
 OUTPUT COMMA
 CASE_OF 15,15
 OUTPUT D DATA REGISTER IS INDEX
 OUTPUT A ADDRESS REGISTER IS INDEX
 CASE_END
 LOAD INPUT_DATA GET THE EXTENSION WORD
 ROTATE RIGHT,12 MOVE REGISTER NUMBER TO LSB
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY THE REGISTER NUMBER
 OUTPUT PERIOD
 LOAD INPUT_DATA GET THE EXTENSION WORD
 CASE_OF 11,11
 OUTPUT W
 OUTPUT L
 CASE_END
 OUTPUT RIGHT_BRACKET

68010 Inverse Assembler HP 10391B IAL Development Package
C-28 Reference Manual

 LOAD INITIAL_DATA RESTORE THE ORIGINAL OPCODE
 RETURN

**

SPECIAL
 CASE_OF REG_FIELD
 GOTO ABS_SHORT ABSOLUTE SHORT ADDRESS
 GOTO ABS_LONG ABSOLUTE LONG ADDRESS
 GOTO PC_DISPLACEMENT PC WITH DISPLACEMENT
 GOTO PC_INDEX PC WITH DISPLACEMENT & INDEX
 GOTO IMMEDIATE_SR IMMEDIATE/ SR CCR MODIFY
 CASE_END
 GOTO ILLEGAL_OPERAND ILLEGAL ADDRESSING MODES

**

ABS_SHORT
 CALL READ_NEXT_OPERAND GET THE EXTENSION WORD
 IF INPUT_ERROR = 0 THEN GOTO ABS_SHORT_OK
 OUTPUT "******"
 RETURN
ABS_SHORT_OK
 IF 15,15 = 1 THEN INCLUSIVE_OR 0FF0000H
 GOTO ADDRESS_OUTPUT

**

ABS_LONG
 CALL READ_NEXT_OPERAND GET THE HIGH ORDER BYTE
 STORE HIGH_BYTE ... AND SAVE IT
 SET RD_STATUS,00B INITIAL STATUS...NO ERRORS
 IF INPUT_ERROR <> 0 THEN SET RD_STATUS,01B HIGH BYTE FAILURE
 CALL READ_NEXT_OPERAND GET THE LOW ORDER BYTE
 STORE LOW_BYTE ... AND SAVE IT
 LOAD RD_STATUS GET THE CURRENT READ STATUS
 IF INPUT_ERROR <> 0 THEN INCLUSIVE_OR 10B LOW BYTE FAILURE
 STORE RD_STATUS SAVE THE READ STATUS

 IF RD_STATUS = 00B THEN GOTO MAP_32 BRIF MAPPING IS OK
 LOAD HIGH_BYTE GET THE UPPER 16 BIT BYTE
 CASE_OF RD_STATUS

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-29

 NOP CANT GET HERE
 OUTPUT FOUR_STAR 01 = HIGH BYTE FAILURE
 OUTPUT ACCUMULATOR,HEX4_FMT 10 = HIGH BYTE OK
 OUTPUT FOUR_STAR 11 = BOTH BYTE FAILURE
 CASE_END
 LOAD LOW_BYTE GET THE LOWER 16 BIT BYTE
 CASE_OF RD_STATUS
 NOP CANT GET HERE
 OUTPUT ACCUMULATOR,HEX4_FMT 01 = LOW BYTE OK
 OUTPUT FOUR_STAR 10 = LOW BYTE FAILURE
 OUTPUT FOUR_STAR 11 = BOTH BYTE FAILURE
 CASE_END
 RETURN

MAP_32
 LOAD HIGH_BYTE GET THE UPPER 16 BITS
 AND 0FFH MASK TO LOWER 2 HIGH BYTE DIGITS
 ROTATE LEFT,16 MOVE TO THE UPPER 8 BITS
 INCLUSIVE_OR LOW_BYTE OR IN THE LOWER 16 BITS
 GOTO ADDRESS_OUTPUT

**

PC_DISPLACEMENT
 CALL READ_NEXT_OPERAND GET THE 16 BIT DISPLACEMENT
 IF INPUT_ERROR <> 0 THEN GOTO WORD_ERROR
PC_DISP_OK
 IF 15,15 = 1 THEN INCLUSIVE_OR 0FF0000H SIGN EXTEND DISPLACEMENT
 ADD INPUT_ADDRESS ADD DISPLACEMENT TO THE CURRENT PC
 CALL ADDRESS_OUTPUT
 OUTPUT "[PC]"
 RETURN

**

PC_INDEX
 CALL READ_NEXT_OPERAND GET THE EXTENSION WORD
 IF INPUT_ERROR = 0 THEN GOTO PC_INDEX_OK
 OUTPUT "**[PC,**.*]"
 RETURN
PC_INDEX_OK
 AND 0FFH IGNORE UPPER BYTE

68010 Inverse Assembler HP 10391B IAL Development Package
C-30 Reference Manual

 IF 7,7 = 1 THEN INCLUSIVE_OR 0FFFF00H SIGN EXTEND DISPLACEMENT
 ADD INPUT_ADDRESS ADD DISPLACEMENT TO THE CURRENT PC
 CALL ADDRESS_OUTPUT
 LOAD INPUT_DATA
 OUTPUT "[PC,"
 CASE_OF 15,15
 OUTPUT D
 OUTPUT A
 CASE_END
 ROTATE RIGHT,12 MOVE INDEX REGISTER TO LSB
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY REG NUMBER
 OUTPUT PERIOD
 LOAD INPUT_DATA GET THE EXTENSION WORD BACK
 CASE_OF 11,11 DISPLAY THE SIZE OF THE INDEX
 OUTPUT W
 OUTPUT L
 CASE_END
 OUTPUT RIGHT_BRACKET
 RETURN

**

IMMEDIATE_SR
 IF SR_ACCESS = FALSE THEN GOTO IMMEDIATE
 CASE_OF SIZE_FIELD
 OUTPUT CCR BYTE TRANSFER TO CCR
 OUTPUT SR WORD TRANSFER EFFECTES ENTIRE SR
 GOTO ILLEGAL_OPERAND
 GOTO ILLEGAL_OPERAND
 CASE_END
 RETURN
IMMEDIATE
 OUTPUT NUM_SIGN
 CALL READ_NEXT_OPERAND GET THE NEXT OPERAND WORD
 IF INPUT_ERROR = 0 THEN GOTO EXT1_OK
 CASE_OF SIZE_FIELD
 OUTPUT TWO_STAR NO BYTE FOUND
 OUTPUT FOUR_STAR NO WORD FOUND
 OUTPUT FOUR_STAR HIGH ORDER WORD NOT FOUND
 GOTO ILLEGAL_OPCODE ILLEGAL SIZE SPECIFICATION
 CASE_END
 GOTO CHECK_FOR_LONG

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-31

EXT1_OK
 CASE_OF SIZE_FIELD
 OUTPUT ACCUMULATOR,HEX2_FMT DISPLAY 8 BIT DATA
 OUTPUT ACCUMULATOR,HEX4_FMT DISPLAY 16 BIT DATA
 OUTPUT ACCUMULATOR,HEX4_FMT DISP HIGH ORDER 16 BITS
 GOTO ILLEGAL_OPCODE SHOULDNT EVER GET HERE
 CASE_END

CHECK_FOR_LONG

*

* NOW, SEE IF WE ARE DEALING WITH LONG IMMEDIATE VALUES. IF NOT,
* THERE IS NO NEED TO READ A SECOND EXTENSION WORD.

*

 IF SIZE_FIELD <> 10B THEN RETURN BRIF NOT LONG DATA

*

* AT THIS POINT, WE ARE LOOKING AT "LONG" IMMEDIATE VALUES ONLY

*

 CALL READ_NEXT_OPERAND GET THE 2ND EXTENSION WORD
 IF INPUT_ERROR <> 0 THEN GOTO WORD_ERROR
EXT2_OK
 OUTPUT ACCUMULATOR,HEX4_FMT
 RETURN

**

DISP_NEXT_WORD

* DISPLAY THE NEXT WORD (16 BIT QUANTITY) FROM THE ANALYZER MEMORY

 CALL READ_NEXT_OPERAND GET THE NEXT STATE

 IF INPUT_ERROR <> 0 THEN GOTO WORD_ERROR
WORD_READ_OK
 OUTPUT ACCUMULATOR,HEX4_FMT
 RETURN

**

READ_NEXT_OPERAND

 INCREMENT REQUESTED_ADDRESS
 INCREMENT REQUESTED_ADDRESS
 CALL EXMODE_PW

68010 Inverse Assembler HP 10391B IAL Development Package
C-32 Reference Manual

 CALL CHECK_FOR_BLOCK DONT ALLOW IT TO CROSS BLOCK BOUNDARIES

 IF INPUT_ERROR = 0 THEN TAG_WITH OPERAND_USED MARK THIS AS A USED STATE

SKIP_RET
 LOAD INPUT_DATA
 RETURN

EXMODE_PW

BCMODE_PW
 INPUT ABS,REQUESTED_ADDRESS,QUALIFIED READ THE NEXT STATE
 RETURN

READ_MEMORY_OPERAND

**

CHECK_FOR_BLOCK

 IF TASK = 3 THEN RETURN DISABLE FOR STATE (TEMPORARY)

* THIS ROUTINE CHECKS TO BE SURE THAT AN INVERSE ASSEMBLY BLOCK WILL
* NOT BE CROSSED INTO BY AN INSTRUCTION BEING DECODED IN A PREVIOUS
* BLOCK. FOR MORE INFORMATION ON THIS PROCEDURE, SEE STEVE WILLIAMS.
*
* THE OPERATION OF THIS ROUTINE:
*
* 1. IF A DISASSEMBLY BLOCK HAS BEEN PREVIOUSLY ENCOUNTERED
* DURING THE DECODING OF THE CURRENT INSTRUCTION, THIS
* ROUTINE ASSUMES THAT WE ARE STILL IN THAT BLOCK, AND
* SETS "INPUT_ERROR" TO MAKE THE INVERSE ASSEMBLER THINK
* THAT A READ ERROR DID OCCUR.
*
* 2. IF THERE WAS A NORMAL ERROR IN READING THIS STATE, NO
* DISASSEMBLY BLOCK IS ASSUMED, BUT "INPUT_ERROR" DOES
* REFLECT THAT AN ERROR OCCCURRED.
*
* 3. IF THE CONTROL TAG (BITS 17 AND 16 OF INPUT_TAG) INDICATES
* THIS STATE TO HAVE BEEN PREVIOUSLY USED AS A FIRST INSTRUCTION,
* THEN A DISASSEMBLY BLOCK BOUNDARY IS SAID TO HAVE

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-33

* ENCOUNTERED. THE DISASSEMBLY_BLOCK FLAG IS SET, AND
* AN INPUT ERROR IS FLAGGED SO THAT THE INVERSE ASSEMBLER
* CAN DO THE PROPER THINGS WITH THE ERROR FLAG.

 IF DISASSEMBLY_BLOCK = TRUE THEN SET INPUT_ERROR,1

 IF INPUT_ERROR <> 0 THEN RETURN LEAVE IF READ ERROR

 LOAD INPUT_TAG GET THE TAG ASSOCIATED WITH THE NEW STATE
 IF 17,16 <> 11B THEN RETURN 11B CONTROL TAG IS ONLY TAG NOT OK TO USE.

 SET DISASSEMBLY_BLOCK,TRUE A DISASSEMBLY BLOCK IS PRESENT
 SET INPUT_ERROR,1 MAKE IT LOOK LIKE THE READ FAILED
 RETURN

**

SHOW_SIZE

* DISPLAY THE SIZE OF THE OPERATION (BYTE, WORD, LONG)

 OUTPUT PERIOD
 CASE_OF 7,6
 OUTPUT B
 OUTPUT W
 OUTPUT L
 GOTO ILLEGAL_OPERAND
 CASE_END
 ROTATE RIGHT,6 MOVE SIZE TO LSB
 AND ML2 ONLY LOWER 2 BITS ARE THE SIZE FIELD
 STORE SIZE_FIELD SAVE THE SIZE FIELD
 LOAD INITIAL_DATA RESTORE THE ORIGINAL OPCODE
 POSITION ABS,TAG_COLUMN MOVE OVER TO OPERAND FIELD
 RETURN

**

IMM_DATA_11_9

* DISPLAY THE 3 BIT IMMEDIATE DATA
* VALUES 1-7 ARE INTERPRETED AS 1-7, VALUE 0 IS INTERPRETED AS 8

68010 Inverse Assembler HP 10391B IAL Development Package
C-34 Reference Manual

 OUTPUT NUM_SIGN IMMEDIATE DATA
 IF 11,9 <> 0 THEN GOTO IMM_NOT_0
 OUTPUT "8"
 RETURN
IMM_NOT_0
 ROTATE RIGHT,9 MOVE DATA TO LOWER 3 BITS
 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY THE 3 BIT #
 LOAD INITIAL_DATA RESTORE THE INITIAL OPCODE
 RETURN

**

CONDITION_CODE

* DISPLAY THE APPLICABLE CONDITION CODES FOR Scc, DBcc AND Bcc INSTR

 CASE_OF 11,8
 GOTO COND_T_RA RA FOR Bcc, T FOR Scc AND DBcc
 GOTO COND_F_BSR BSR, F FOR Scc AND DBcc
 OUTPUT "HI"
 OUTPUT "LS"
 OUTPUT "CC"
 OUTPUT "CS"
 OUTPUT "NE"
 OUTPUT "EQ"
 OUTPUT "VC"
 OUTPUT "VS"
 OUTPUT "PL"
 OUTPUT "MI"
 OUTPUT "GE"
 OUTPUT "LT"
 OUTPUT "GT"
 OUTPUT "LE"
 CASE_END
 RETURN

COND_T_RA

* DISPLAY A "T" (TRUE) FOR Scc AND DBcc. "RA" FOR Bcc INSTR

 CASE_OF 12,12
 OUTPUT "RA" BRA INSTRUCTION

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-35

 OUTPUT "T" ST AND DBT INSTRUCTIONS
 CASE_END
 RETURN

COND_F_BSR

* DISPLAY AN "F" (FALSE) FOR Scc AND DBcc, OR BSR

 CASE_OF 12,12
 OUTPUT SR BSR INSTRUCTION
 OUTPUT "F" SF AND DBF INSTRUCTIONS
 CASE_END
 RETURN

**

ILLEGAL_OPERAND
 POSITION ABS,TAG_COLUMN
 OUTPUT ILLEGAL
 OUTPUT " Operand "
 ABORT

**

DATA_ERROR
 OUTPUT "Data Error"
 ABORT

**

ILLEGAL_OPCODE
 OUTPUT ILLEGAL
 OUTPUT " Opcode"
 ABORT

**

WORD_ERROR
 OUTPUT FOUR_STAR
 RETURN

**

68010 Inverse Assembler HP 10391B IAL Development Package
C-36 Reference Manual

INCOMPLETE_OPCODE
 OUTPUT "incomplete opcode"
 ABORT

**

ADDR_REG_11_9

* DISPLAY THE ADDRESS REGISTER FOUND IN BITS 11 THRU 9

 LOAD INITIAL_DATA BE SURE THE INITIAL OPCODE IS LOADED
 ROTATE RIGHT,9 MOVE THE REGISTER FIELD TO 3 LSB

ADDR_REG_2_0
 OUTPUT A
 GOTO REG_TYPE_SHOWN

DATA_REG_11_9

* DISPLAY THE DATA REGISTER FOUND IN BITS 11 THRU 9

 LOAD INITIAL_DATA BE SURE THE INITIAL OPCODE IS LOADED
 ROTATE RIGHT,9 MOVE THE REGISTER FIELD TO 3 LSB

DATA_REG_2_0
 OUTPUT D

REG_TYPE_SHOWN

* DISPLAY THE REGISTER NUMBER FOUND IN THE REG FIELD (BITS 11 THRU 9)

 OUTPUT ACCUMULATOR,DEC1_FMT_3 DISPLAY THE REGISTER NUMBER
 LOAD INITIAL_DATA RESTORE THE ORIGINAL OPCODE
 RETURN

**

EXTENDED_MATH

* DISPLAY "X", SIZE AND OPERANDS FOR ADDX AND SUBX INSTRUCTIONS

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-37

 OUTPUT "X"
 CALL SHOW_SIZE DISPLAY THE OPERATION SIZE
 CASE_OF 3,3
 SET MODE_FIELD,000B SRC & DEST ARE DATA REG DIRECT MODE
 SET MODE_FIELD,100B SRC & DEST ARE PREDEC ADDR IND MODE
 CASE_END
 CALL EA_DISP_MODE_SET DISPLAY THE SOURCE OPERAND
 ROTATE RIGHT,9 MOVE DESTINATION TO LOWER 3 BITS
 OUTPUT COMMA
 GOTO EA_DISP_MODE_SET DISPLAY THE DESTINATION OPERAND

**

MARK_PREFETCH

*
* FOR INSTRUCTIONS THAT HAVE KNOWN, UNUSED PREFETCH STATES, FIND THE
* NEXT OPCODE STATE, THEN SEE IF ITS ADDRESS IS THE ADDRESS IMMEDIATELY
* FOLLOWING THE CURRENT INSTRUCTION. IF SO, THEN ITS UNUSED PREFETCH.
*

 INPUT REL,PREFETCH_LOC,QUALIFIED LOOK FOR THE NEXT PROGRAM READ STATE
 CALL CHECK_FOR_BLOCK DONT CROSS INVERSE ASSEMBLY BLOCK
 IF INPUT_ERROR <> 0 THEN RETURN NO MORE PROG READ STATUS STATES
 LOAD REQUESTED_ADDRESS ADDR OF STATE SUSPECTED TO HAVE UNUSED PREFETCH
 ADD 2 MOVE AHEAD TO POINT AT UNUSED PREFETCH
 SUBTRACT INPUT_ADDRESS SUBTRACT OFF THE CURRENT ADDRESS
 IF 31,0 <> 0 THEN RETURN
 TAG_WITH UNUSED_PREFETCH
 RETURN

**

UNKNOWN

*
* THIS IS TO DISPLAY THE FUNCTION CODES OF UNKNOWN MEMORY CYCLES
*

 OUTPUT "unknown ("
 AND 01110000B
 ROTATE RIGHT,4

68010 Inverse Assembler HP 10391B IAL Development Package
C-38 Reference Manual

 OUTPUT ACCUMULATOR,BIN3_FMT
 OUTPUT ")"
 LOAD INPUT_STATUS
 RETURN

**

INT_ACK

*
* THIS ROUTINE CHECKS FOR INT_ACK OR CPU SPACE OPERATION
*

 LOAD INPUT_ADDRESS
 SET INT,TRUE
 IF 23,4 <> INT_VAL THEN GOTO CPU
 OUTPUT "int_ack"
 LOAD INPUT_STATUS
 RETURN

CPU
 SET INT,FALSE
 OUTPUT "cpu space"
 LOAD INPUT_STATUS
 RETURN

**

HP 10391B IAL Development Package 68010 Inverse Assembler
Reference Manual C-39

68010 Inverse Assembler HP 10391B IAL Development Package
C-40 Reference Manual

D
Assembler Error Messages

Detection and
Listing

The assembler (ASM.EXE) detects and lists all errors noted in the
source program. The program errors are indicated in the source
program listing by a two-letter code following each source statement
that contains an error.

Note
If multiple errors occur in the same source statement, generally only
the first error noted will be reported.

Each error message contains an error code, a cursor (^ ^) that points
to the error location in the source statement, and a statement that
indicates the line number of the previous source statement that was in
error to facilitate error tracing.

A summary of the number of errors within the program, along with a
brief description of all error codes noted, is given at the end of the
program listing.

The error message format is as follows:

HP 10391B IAL Development Package Assembler Error Messages
Reference Manual D-1

Error Codes A list of the error codes (in alphabetical order) along with a
description of their meaning is shown below:

Code Error Definition

AS ASCII STRING - The ASCII string was terminated
improperly.

DE DEFINITION ERROR - Indicated symbol must be
defined prior to it being referenced. Symbol may be
defined later in the program sequence.

DS DUPLICATE SYMBOL - Indicates that the defined
symbol noted has been previously defined in the program
assembly sequence.

ET EXPRESSION TYPE - The resulting type of expression
is invalid. Absolute expression was expected and not
found.

IC ILLEGAL CONSTANT - Indicates that the assembler
encountered a constant that is not valid.

For example: 109B (9 is invalid)

IE ILLEGAL EXPRESSION - Specified expression is
either incomplete or an invalid term was found within the
expression.

IO INVALID OPERAND - Specified operand is either
incomplete and inaccurately used for this operation.
This occurs when an unexpected operand is encountered
or the operand is missing. If the required operand is an
expression, the error indicates that the first item in the
operand field is illegal.

Assembler Error Messages HP 10391B IAL Development Package
D-2 Reference Manual

 Code Error Definition

IS ILLEGAL SYMBOL - Syntax expected an identifier and
encountered an illegal character or token.

MO MISSING OPERATOR - An arithmetic operator was
expected, but was not found.

MP MISMATCHED PARENTHESIS - Missing right or left
parenthesis.

SE STACK ERROR - Indicates that a statement or
expression does not conform to the required syntax.

TR TEXT REPLACEMENT - Indicates that the specified
text replacement string is invalid.

UC UNDEFINED CONDITIONAL - Conditional operation
code is invalid.

UO UNDEFINED OPERATION CODE - Operation code
encountered is not defined or the assembler does not
allow the operation to be processed in its current context.
This occurs when the operation code is misspelled or
an invalid delimiter follows the label field.

US UNDEFINED SYMBOL - The indicated symbol is not
defined as a label.

HP 10391B IAL Development Package Assembler Error Messages
Reference Manual D-3

Assembler Error Messages HP 10391B IAL Development Package
D-4 Reference Manual

Index

16511B, 1-23, 3-2
68010 connections, 1-31
68010 inverse assembler, C-1
68010 mnemonics, 1-32
68010.BAT, 1-3, 1-22
68010.CMD, 1-3
8085, 2-6
8085 inverse assembler, A-1
8085 inverse assembly, 2-4
8085.BAT, 1-3, 1-22
8085.CMD, 1-3, 1-22
\ HP64700, 1-8
\ HP64700\ TABLES, 1-5, 1-7, 1-13

A

ABORT, 4-9
Absolute addresses, 3-18
Absolute mode, 3-12
Absolute positioning, 4-44
ACCUMULATOR, 3-1 / 3-3, 3-17, 4-6, 4-43

convert, 4-43
ACCUMULATOR instructions, 3-24
Acquisition memory, 3-1 / 3-2, 4-34

Reading, 3-8
ADD, 3-4, 3-24, 4-10
Additional labels, 1-25
ADDR, 1-23 / 1-24, 3-8
ADDR_B, 1-23 / 1-24
AIAL, 1-3, 1-5, 1-7
AND, 4-11
Apostrophes, 4-7

Arithmetic, 3-4, 4-55
Arithmetic instructions, 3-24
ASCII, 3-28, 4-1, 4-4, 4-26
ASCII source code, 1-11
ASCII STRING, D-2
ASCII/ASC, 4-12
ASM, 1-22
ASM.EXE, 1-3, 1-5, 1-7 / 1-8, 1-11, 1-13, D-1
Assembler options, 1-15
Assembling source code, 1-13
Asterisk, 4-6 / 4-7
AUTOEXEC.BAT, 1-8

B

BASE_TITLE, 4-13
Batch files, 1-22
Baud rate, 1-9
Binary, 4-7
Blank lines, 4-3
Branching, 3-2
Building a configuration file, 1-23
Building a custom inverse assembler, 1-11

C

CALL, 3-2, 3-28, 4-14, 4-16, 4-47
Carets, 4-7
CASE, 3-2 / 3-3, 4-8
CASE_END, 4-15
CASE_OF, 3-20, 4-15 / 4-16

HP 10391B IAL Development Package
Reference Manual Index-1

Checklist, 1-25
Colon, 4-7
COM port, 1-2, 1-9, 1-12, 1-19
Comment field, 4-6
Communication variable, 3-23
Communication variables, 1-25, 3-3, 3-9 / 3-10,
3-22, 3-30 / 3-31, 4-34
COMPLEMENT, 4-17
Conditional instructions, 3-25
Conditional statements, 4-55
Conditional testing, 3-2, 4-15
Configuration file, 1-12, 1-23
Configuration menu, 1-29
CONST, 4-4
CONSTANT, 3-28
CONSTANT/CONST, 4-18
Cross-reference, 1-17
Cycle type, B-10

D

DATA, 1-23 / 1-24, 3-8
Data Bits, 1-9
DATA_B, 1-23 / 1-24
Debugging, 1-15, 3-29
Decimal, 4-7
Declared variables, 3-3
Decoding captured data, 2-2
DECREMENT, 4-19
Default output, 1-18
DEFAULT_WIDTH, 3-17, 4-20
DEFINITION ERROR, D-2
Delimiters, 4-7
Destination address

decoding, 3-11
Development process, 3-4
Disk space, 1-2
Display buffer, 3-4, 3-17
Display menu, B-6, B-15 / B-16
DISPLAY_BASE, 4-25

Downloading, 1-19
Duplicate Symbol, 4-5, D-2

E

Equipment required, 1-2
Error code, D-1
Error codes, D-2 / D-3
Error definitions, D-2 / D-3
Error message format, D-1
Error messages, 1-13 / 1-14, 4-5, 4-39, D-1
EXCLUSIVE_OR, 4-21
EXPRESSION TYPE, D-2
EXTRACT_BIT, 4-22

F

FETCH_POSITION, 3-17, 4-23
File description, 1-21
Filenames, 1-21
FORMAT, 3-17, 3-28, 4-4, 4-25
Format menu, 1-23, 1-29, 3-8

G

GOTO, 3-2, 3-28, 4-16, 4-27

H

Hardware setup, 1-9
Hexadecimal, 4-7

HP 10391B IAL Development Package
Index-2 Reference Manual

I

I68010.R, 1-27
I68010.S, 1-3
I8085.R, 1-14
I8085.s, 1-3
IAL, 3-1, 4-2
IAL environment, 3-1 / 3-2
IAL variables, 3-3
IALDOWN, 1-21 / 1-22, B-17, B-19

prompts, 1-21
IALDOWN.EXE, 1-3, 1-8, 1-12, 1-19
IF, 3-2 / 3-4, 3-20, 4-8, 4-15, 4-28 / 4-29
IF_NOT_MAPPED, 3-18, 3-20, 3-22, 4-15, 4-30 /
4-31
ILLEGAL CONSTANT, D-2
ILLEGAL EXPRESSION, D-2
ILLEGAL SYMBOL, D-3
Immediate, 4-6
INCLUSIVE_OR, 4-32
Incomplete status, 3-21 / 3-22, B-1, B-6, B-15
INCREMENT, 4-33
Infinite loop, 4-39
INITIAL_ADDRESS, 3-30
INITIAL_DATA, 3-30
INITIAL_FLAGS, 3-22, 3-31, B-18 / B-19
INITIAL_OPTIONS, 3-22, 3-31, B-18 / B-19
INPUT, 3-11 / 3-12, 3-15 / 3-16, 3-29, 4-34 / 4-36,
4-45, 4-49
INPUT ABS, 4-36
INPUT REL, 4-35
INPUT,ABS, B-3 / B-4, B-11
INPUT_ADDR_B, 3-30
INPUT_ADDRESS, 3-30, 4-34
INPUT_DATA, 3-30, 4-34, B-1, B-10
INPUT_DATA_B, 3-30
INPUT_ERROR, 3-16, 3-31, 4-34
INPUT_STATUS, 3-30, 4-34, B-1, B-3, B-10

INPUT_TAG, 3-21, 3-30, 4-35, B-2 / B-3, B-5, B-7,
B-9 / B-13, B-18

values, B-8
INPUT_TAGS, B-15
INSTALL.BAT, 1-3, 1-5, 1-7 / 1-8
Instruction, 4-5

upper-case, 4-5
Instructions, 3-27
INVALID OPERAND, D-2
Invasm field, 1-19, B-6 / B-9, B-15 / B-17

options, B-17
Inverse assembler, 2-5, 2-9

development, 3-4
example, 1-27, 3-6
illegal disassembly, B-8
operation, 2-2, 3-7
size, 3-20
speed, 3-20
synchronizing, B-6 / B-7
titles, 3-28

Inverse assembly algorithm, 1-11
Inverse assembly process, 2-4

L

Label, 4-6
invalid, 4-4
length, 4-5
upper/lower-case, 4-5
valid, 4-4

Label field, 4-4
Label names, 4-4
LABEL_TITLE, 4-37
Labels, 1-25, 3-28
Length of lines, 4-3
Line format rules, 4-3
Linking

Configuration file, 1-26
Inverse assembler, 1-26

LOAD, 4-38

HP 10391B IAL Development Package
Reference Manual Index-3

Logical instructions, 3-24
Logical OR, 4-32
Loosing sync, B-9
LSB, 4-6

M

Marking states, 3-21, 4-53, B-2, B-7, B-12
MAX_INSTRUCTION, 4-39
Memory, 4-6
Memory instructions, 3-24
Memory-to-memory, 3-3
MISMATCHED PARENTHESIS, D-3
MISSING OPERATOR, D-3
mnemonics, 1-32
MSB, 4-6

N

Nest level, 4-14
NEW_LINE, 3-17, 4-41
Non-printable characters, 4-1 / 4-2
NOP, 4-42
Numeric terms, 4-7

O

Object code, 2-6
Octal, 4-7
One’s complement, 4-17
Opcode fetches, 2-9
Operand field, 4-6
Operand type, 4-6
Operation field, 4-5
Optimizing sections, 4-39

Options
assembler, 1-15
definitions, 1-16

OUTPUT, 3-17, 4-12, 4-23, 4-25, 4-43
Output buffer, 3-4, 3-17
Output display instructions, 3-26 / 3-27
Overflow message, 4-39
Overview, 2-1

P

Parity, 1-9
Parsing opcodes, 3-20
PATH statement, 1-8
Pattern, 3-19
POSITION, 3-17, 4-44
Program control instructions, 3-26
Program errors, D-1
Protocol, 1-9
Pseudo instructions, 3-29
Pseudo-processor, 3-2

Q

QUALIFIED, 4-35 / 4-36
QUALIFIED option, 3-16
QUALIFY_MASK, 3-16, 3-31, 4-35, 4-45, 4-49
QUALIFY_VALUE, 3-15 / 3-16, 3-31, 4-35, 4-45,
4-49
Quotation marks, 4-7

R

R extension, 1-14, 1-19, 1-21
Range, 3-19
READ ONLY access, B-7
Read Only Memory, 3-2

HP 10391B IAL Development Package
Index-4 Reference Manual

Read operation, 2-8
Relative mode, 3-12
Relative positioning, 4-44
Relocatable code, 1-14
Relocatable file, 1-11, 1-19, 1-21

downloading, 1-12
Relocatable object code, 1-14
Result, 4-6
RETURN, 3-7, 4-14, 4-16, 4-47
RETURN_FLAGS, 3-22, 3-31, 4-31, B-12 / B-14
Rolling backwards, B-9
ROTATE, 4-48
RS-232C configuration, 1-9
RUN key, 1-32, 2-2

S

SEARCH_LIMIT, 3-16, 3-31, 4-36, 4-49
Semicolon, 4-6 / 4-7
SET, 4-50
SET statement, 1-8
Sign bit, 3-4
Software compatibility, B-5, B-19
Software files, 1-3
Software installation, 1-3, 1-5, 1-7

on a flexible disk, 1-6
on a hard disk, 1-4

Source code
assembling, 1-13
assembly, 1-11

Space, 4-7
STA, 3-11
STA instruction, 2-4, 2-6 / 2-7

decoding, 3-8
Stack, 3-2
STACK ERROR, D-3
STAT, 1-23 / 1-24, 3-8, 3-15, 4-35, B-1, B-3
State analysis, 1-23
State Listing menu, 1-30
Status, 2-7

Stop Bits, 1-9
STORE, 4-51
String, 4-6
String constants, 4-8
SUBTRACT, 3-4, 4-52
Symbol table, 3-18 / 3-19, 4-30
Symbolic addresses, 3-18
Symbolic operand

definition, 3-28
Symbols, 4-30
Synchronizing the inverse assembler, B-6
Syntax, 4-1
Syntax rules, 4-2
System software, 2-2
System tags, 3-21, B-7

T

Tab, 4-7
TAG_WITH, 3-21, 4-53, B-3 / B-4, B-14
Tags, 3-21, 3-30, 4-35, 4-53, B-3
TASK, 3-23, 3-31, B-5
Termination, 4-5
Termination of lines, 4-3
Text editor, 4-1 / 4-2
TEXT REPLACEMENT, D-3
THEN, 4-29
Trace specification, 2-2
Two’s complement, 3-4
TWOS_COMPLEMENT, 4-54
TYPE, 1-17

U

UNDEFINED CONDITIONAL, D-3
UNDEFINED OPERATION CODE, D-3
UNDEFINED SYMBOL, D-3

HP 10391B IAL Development Package
Reference Manual Index-5

US ASCII, 4-1
non-printable, 4-1 / 4-2

User-tags, 3-21, B-7

V

Valid file description, 1-21
Valid filenames, 1-21
VAR, 3-3
VARIABLE, 3-28
VARIABLE/VAR, 4-55

W

Write operation, 2-8

HP 10391B IAL Development Package
Index-6 Reference Manual

	Printing History
	List of Effective Pages
	Product Warranty
	Contents
	General Information
	Equipment Required
	Installing the Software
	Setting Up the Hardware
	Building a Custom Inverse Assembler
	Assembling the Source Code
	Downloading the Relocatable File
	Building the Configuration File
	Putting It All Together

	Inverse Assembler Operation
	Inverse Assembler Operation
	Inverse Assembly Process
	Summary

	Writing Inverse Assembler Code
	IAL Environment
	The Logic Analyzer Aquisition Memory
	The Accumulator
	IAL Variables
	The Output Display Buffer
	Developing an Inverse Assembler
	A Simple Inverse Assembler
	Reading Acquisition Memory
	Decoding the STA Instruction
	Decoding the Destination Address of the STA Instruction
	Additional Capabilities of the Input Instruction
	Putting Text into the Output Display Buffer
	Generating Symbolic Addresses
	Hints on Parsing an Opcode
	Using INPUT_TAG to Mark States
	Other Communication Variables
	RETURN_FLAGS
	TASK

	Inverse Assembler Instruction Set
	Choosing a Text Editor
	Entering Inverse Assembler Source Code
	Language Reference
	ABORT
	ADD
	AND
	Pseudo ASCII/ASC
	Pseudo BASE_TITLE
	CALL
	CASE_OF
	COMPLEMENT
	CONSTANT/ CONST
	DECREMENT
	Pseudo DEFAULT_WIDTH
	EXCLUSIVE_OR
	EXTRACT_BIT
	FETCH_POSITION
	Pseudo FORMAT
	GOTO
	IF
	IF_NOT_MAPPED
	INCLUSIVE_OR
	INCREMENT
	INPUT
	Pseudo LABEL_TITLE
	LOAD
	MAX_INSTRUCTION Pseudo
	NEW_LINE
	NOP
	OUTPUT
	POSITION
	QUALIFY_MASK & QUALIFY_VALUE Pseudos
	RETURN
	ROTATE
	SEARCH_LIMIT Pseudo
	SET
	STORE
	SUBTRACT
	TAG_WITH
	TWOS_COMPLEMENT
	Pseudo VARIABLE/ VAR

	8085 Inverse Assembler
	Microprocessors with Incomplete Status
	Using INPUT_TAG to Mark States
	Software Compatibility with other Logic Analyzers
	Synchronizing the Inverse Assembler to the Captured Data
	The "Invasm" Field
	INPUT_TAG Values and How They Change
	Using RETURN_FLAGS
	Summary of INPUT_TAGS Bits 16 and 17
	States Containing Multiple Opcodes
	The "Invasm" Field Revisited
	Code Synchronization with the HP 1630/31 Logic Analyzers

	68010 Inverse Assembler
	Assembler Error Messages
	Error Codes

	Index

